The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

8061-8080hit(42807hit)

  • Quantitative Assessment of Facial Paralysis Based on Spatiotemporal Features

    Truc Hung NGO  Yen-Wei CHEN  Naoki MATSUSHIRO  Masataka SEO  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/10/01
      Vol:
    E99-D No:1
      Page(s):
    187-196

    Facial paralysis is a popular clinical condition occurring in 30 to 40 patients per 100,000 people per year. A quantitative tool to support medical diagnostics is necessary. This paper proposes a simple, visual and robust method that can objectively measure the degree of the facial paralysis by the use of spatiotemporal features. The main contribution of this paper is the proposal of an effective spatiotemporal feature extraction method based on a tracking of landmarks. Our method overcomes the drawbacks of the other techniques such as the influence of irrelevant regions, noise, illumination change and time-consuming process. In addition, the method is simple and visual. The simplification helps to reduce the time-consuming process. Also, the movements of landmarks, which relate to muscle movement ability, are visual. Therefore, the visualization helps reveal regions of serious facial paralysis. For recognition rate, experimental results show that our proposed method outperformed the other techniques tested on a dynamic facial expression image database.

  • High-Speed Visible Light Communication Using Combination of Low-Speed Image Sensor and Polygon Mirror

    Yoshihito IMAI  Tadashi EBIHARA  Koichi MIZUTANI  Naoto WAKATSUKI  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    263-270

    Visible light communication is one of the key technologies for intelligent transport systems (ITS). However, current visible light communication systems require high-cost devices, such as high-speed image sensors, to support their high transmission rates. In this paper, we designed a communication system with combination of a low-speed commercial image sensor and a polygon mirror — namely, a fast-blinking light signal is scanned by the polygon mirror and captured as a residual image on the low-speed image sensor — to achieve visible light communication on existing mobile devices with high transmission rates. We also analyzed some required conditions, such as the relationship between the exposure time of the image sensor and the optimal resolution, and conducted experiments for performance evaluation. As a result, we found that the proposed system could achieve a data rate of 120bps, 10 times faster than that of the existing scheme when we compare them using the same image sensor. We also found that the proposed system can achieve a practical bit error rate in a low-noise environment.

  • Ontology Based Framework for Interactive Self-Assessment of e-Health Applications Open Access

    Wasin PASSORNPAKORN  Sinchai KAMOLPHIWONG  

     
    INVITED PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    2-9

    Personal e-healthcare service is growing significantly. A large number of personal e-health measuring and monitoring devices are now in the market. However, to achieve better health outcome, various devices or services need to work together. This coordination among services remains challenge, due to their variations and complexities. To address this issue, we have proposed an ontology-based framework for interactive self-assessment of RESTful e-health services. Unlike existing e-health service frameworks where they had tightly coupling between services, as well as their data schemas were difficult to change and extend in the future. In our work, the loosely coupling among services and flexibility of each service are achieved through the design and implementation based on HYDRA vocabulary and REST principles. We have implemented clinical knowledge through the combination of OWL-DL and SPARQL rules. All of these services evolve independently; their interfaces are based on REST principles, especially HATEOAS constraints. We have demonstrated how to apply our framework for interactive self-assessment in e-health applications. We have shown that it allows the medical knowledge to drive the system workflow according to the event-driven principles. New data schema can be maintained during run-time. This is the essential feature to support arriving of IoT (Internet of Things) based medical devices, which have their own data schema and evolve overtime.

  • Unitary Transform-Based Template Protection and Its Application to l2-norm Minimization Problems

    Ibuki NAKAMURA  Yoshihide TONOMURA  Hitoshi KIYA  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    60-68

    We focus on the feature transform approach as one methodology for biometric template protection, where the template consists of the features extracted from the biometric trait. This study considers some properties of the unitary (including orthogonal) transform-based template protection in particular. It is known that the Euclidean distance between the templates protected by a unitary transform is the same as that between original (non-protected) ones as a property. In this study, moreover, it is shown that it provides the same results in l2-norm minimization problems as those of original templates. This means that there is no degradation of recognition performance in authentication systems using l2-norm minimization. Therefore, the protected templates can be reissued multiple times without original templates. In addition, a DFT-based template protection scheme is proposed as an unitary transform-based one. The proposed scheme enables to efficiently generate protected templates by the FFT, in addition to the useful properties. It is also applied to face recognition experiments to evaluate the effectiveness.

  • Gradient-Flow Tensor Divergence Feature for Human Action Recognition

    Ngoc Nam BUI  Jin Young KIM  Hyoung-Gook KIM  

     
    LETTER-Vision

      Vol:
    E99-A No:1
      Page(s):
    437-440

    Current research trends in computer vision have tended towards achieving the goal of recognizing human action, due to the potential utility of such recognition in various applications. Among many potential approaches, an approach involving Gaussian Mixture Model (GMM) supervectors with a Support Vector Machine (SVM) and a nonlinear GMM KL kernel has been proven to yield improved performance for recognizing human activities. In this study, based on tensor analysis, we develop and exploit an extended class of action features that we refer to as gradient-flow tensor divergence. The proposed method has shown a best recognition rate of 96.3% for a KTH dataset, and reduced processing time.

  • Open-Loop Correlation Reduction Precoding in Overloaded MIMO-OFDM Systems

    Hikari MATSUOKA  Yoshihito DOI  Tatsuro YABE  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    202-210

    This paper proposes an open-loop correlation reduction precoding scheme for overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. In overloaded MIMO-OFDM systems, frequency diversity through joint maximum likelihood (ML) decoding suppresses performance degradation owing to spatial signal multiplexing. However, on a line-of-sight (LOS) channel, a channel matrix may have a large correlation between coded symbols transmitted on separate subcarriers. The correlation reduces the frequency diversity gain and deteriorates the signal separation capability. Thus, in the proposed scheme, open-loop precoding is employed at the transmitter of an overloaded MIMO system in order to reduce the correlation between codewords transmitted on different signal streams. The proposed precoding scheme changes the amplitude as well as the phase of the coded symbols transmitted on different subcarriers. Numerical results obtained through computer simulation show that the proposed scheme improves the bit error rate performance on Rician channels. It is also shown that the proposed scheme greatly suppresses the performance degradation on an independent Rayleigh fading channel even though the amplitude of the coded symbols varies.

  • On Recursive Representation of Optimum Projection Matrix

    Norisato SUGA  Toshihiro FURUKAWA  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:1
      Page(s):
    412-416

    In this letter, we show the recursive representation of the optimum projection matrix. The recursive representation of the orthogonal projection and oblique projection have been done in past references. These projections are optimum when the noise is only characterized by the white noise or the structured noise. However, in some practical applications, a desired signal is deteriorated by both the white noise and structured noise. In this situation, the optimum projection matrix has been given by Behrens. For this projection matrix, the recursive representation has not been done. Therefore, in this letter, we propose the recursive representation of this projection matrix.

  • Towards Position-Aware Symbol-Based Searches on Encrypted Data from Symmetric Predicate Encryption Schemes

    Fu-Kuo TSENG  Rong-Jaye CHEN  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:1
      Page(s):
    426-428

    Symmetric predicate encryption schemes support a rich class of predicates over keyword ciphertexts while preserving both keyword privacy and predicate privacy. Most of these schemes treat each keyword as the smallest unit to be processed in the generation of ciphertexts and predicate tokens. To extend the class of predicates, we treat each symbol of a keyword as the smallest unit to be processed. In this letter, we propose a novel encoding to construct a symmetric inner-product encryption scheme for position-aware symbol-based predicates. The resulting scheme can be applied to a number of secure filtering and online storage services.

  • Millimeter-Wave Broadband Mode Transition between Grounded Coplanar Waveguide and Post-Wall Waveguide

    Ryohei HOSONO  Yusuke UEMICHI  Xu HAN  Ning GUAN  Yusuke NAKATANI  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    33-39

    A broadband mode transition between grounded coplanar waveguide (GCPW) and post-wall waveguide (PWW) is proposed. The transition is composed of GCPW, microstrip line (MSL) and PWW, where the GCPW and PWW are connected via the MSL. The transition is fabricated on liquid crystal polymer (LCP) substrate because of its low dielectric loss and cost effectiveness based on a roll-to-roll fabrication process. Center strip of the GCPW is sandwiched by two ground pads in each of which two through-holes and a rectangular slit are structured. Broadband impedance matching is achieved by this structure thanks to an addition of lumped inductance and capacitance to the transition. A part of the MSL is tapered for the broadband operation. A 25% impedance bandwidth for |S11| less than -15dB is achieved in measurement of a fabricated transition. Loss of the GCPW ground-signal-ground (GSG) pad of 0.12dB and that of the MSL-PWW transition of 0.29dB at 60GHz are evaluated from the measurement. Fabrication error and the caused tolerance on performance are also evaluated and small variation in production is confirmed. The mode transition can be used for low loss antenna-in-package in millimeter-wave applications.

  • Design of Pattern Reconfigurable Printed Yagi-Uda Antenna

    Chainarong KITTIYANPUNYA  Monai KRAIRIKSH  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    19-26

    This paper presents a pattern reconfigurable Yagi-Uda antenna on an FR-4 printed circuit board (PCB) for 2.435-2.465GHz-frequency short-range radiocommunication devices. To realize the antenna, pin diodes are attached onto the antenna's driven elements and parasitic elements. The direction of the beam is shifted by alternating the pin diodes status between ON and OFF to induce a quad-directional operation so that E-plane maximum beams are formed in the directions of 135°, 45°, 310° and 225° (i.e. regions 1, 2, 3, 4), respectively. A series of simulations are performed on four parameters: microstrip-to-CPS (coplanar stripline), inter-parasitic spacing, parasitic length, and modes of parasitic elements (i.e. director/reflector) to determine the optimal antenna design. A prototype is fabricated based on the optimal simulation results. The experiments showed very good agreement between the simulation and measured results with regard to the reflection coefficients, radiation patterns and gains for all four beams.

  • Throughput Analyses Based on Practical Upper Bound for Adaptive Modulation and Coding in OFDM MIMO Multiplexing

    Bing HAN  Teruo KAWAMURA  Yuichi KAKISHIMA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    185-195

    This paper proposes a practical throughput upper bound that considers physical layer techniques using adaptive modulation and coding (AMC) for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) multiplexing. The proposed upper bound is computed from the modulation and coding scheme (MCS) that provides the maximum throughput considering the required block error rate (BLER) at the respective received signal-to-noise power ratios as a constraint. Then, based on the practical throughput upper bound, we present the causes of impairment for selecting the best MCS based on the computed mutual information for OFDM MIMO multiplexing. More specifically, through the evaluations, we investigate the effect of MCS selection error on an increasing maximum Doppler frequency due to the round trip delay time and the effect of channel estimation error of maximum likelihood detection associated with reference signal based channel estimation.

  • A Collision Attack on a Double-Block-Length Compression Function Instantiated with 8-/9-Round AES-256

    Jiageng CHEN  Shoichi HIROSE  Hidenori KUWAKADO  Atsuko MIYAJI  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    14-21

    This paper presents the first non-trivial collision attack on the double-block-length compression function presented at FSE 2006 instantiated with round-reduced AES-256: f0(h0||h1,M)||f1(h0||h1,M) such that f0(h0||h1, M) = Eh1||M(h0)⊕h0 , f1(h0||h1,M) = Eh1||M(h0⊕c)⊕h0⊕c , where || represents concatenation, E is AES-256 and c is a 16-byte non-zero constant. The proposed attack is a free-start collision attack using the rebound attack proposed by Mendel et al. The success of the proposed attack largely depends on the configuration of the constant c: the number of its non-zero bytes and their positions. For the instantiation with AES-256 reduced from 14 rounds to 8 rounds, it is effective if the constant c has at most four non-zero bytes at some specific positions, and the time complexity is 264 or 296. For the instantiation with AES-256 reduced to 9 rounds, it is effective if the constant c has four non-zero bytes at some specific positions, and the time complexity is 2120. The space complexity is negligible in both cases.

  • Iterative Improvement of Human Pose Classification Using Guide Ontology

    Kazuhiro TASHIRO  Takahiro KAWAMURA  Yuichi SEI  Hiroyuki NAKAGAWA  Yasuyuki TAHARA  Akihiko OHSUGA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2015/10/01
      Vol:
    E99-D No:1
      Page(s):
    236-247

    The objective of this paper is to recognize and classify the poses of idols in still images on the web. The poses found in Japanese idol photos are often complicated and their classification is highly challenging. Although advances in computer vision research have made huge contributions to image recognition, it is not enough to estimate human poses accurately. We thus propose a method that refines result of human pose estimation by Pose Guide Ontology (PGO) and a set of energy functions. PGO, which we introduce in this paper, contains useful background knowledge, such as semantic hierarchies and constraints related to the positional relationship between body parts. Energy functions compute the right positions of body parts based on knowledge of the human body. Through experiments, we also refine PGO iteratively for further improvement of classification accuracy. We demonstrate pose classification into 8 classes on a dataset containing 400 idol images on the web. Result of experiments shows the efficiency of PGO and the energy functions; the F-measure of classification is 15% higher than the non-refined results. In addition to this, we confirm the validity of the energy functions.

  • FOREWORD

    Yukiyasu TSUNOO  

     
    FOREWORD

      Vol:
    E99-A No:1
      Page(s):
    1-2
  • Improving Performance of DS/SS-IVC Scheme Based on Location Oriented PN Code Allocation

    Reiki KUSAKARI  Akira NAKAMURA  Kohei OHNO  Makoto ITAMI  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    225-234

    Currently, IEEE802.11p and ARIB STD T-109 are available as the typical inter-vehicle communication (IVC) standards. Carrier sense multiple access/collision avoidance (CSMA/CA) and orthogonal frequency division multiplexing (OFDM) are used in these standards. However, the performance degrades when there are hidden terminals. In this paper, IVC system that using a direct sequence spread spectrum (DS/SS) modulation scheme is discussed because it has code division multiple access (CDMA) capability. In DS/SS-IVC scheme, it is possible to avoid hidden terminal problem. On the other hand, near-far problem (NFP), multiple access interference (MAI) and interference by equivalent pseudo noise (PN) codes occurs in DS/SS communication. These problems cause performance degradation. In this paper, interference cancellation scheme and slotted ALOHA scheme with code sensing are applied so as to mitigate the impact of MAI, NFP and interference by equivalent PN code. By applying interference cancellation scheme and slotted ALOHA scheme with code sensing, the performance of DS/SS-IVC is improved. In this paper, location oriented PN code allocation is focused on as a method of PN code assignment. However, DS/SS-IVC scheme based on location oriented PN code allocation has a problem. Since each vehicle obtain PN code based on the position that is estimated by GPS, performance degrades when GPS positioning error occurs. Therefore, the positioning system of DS/SS-IVC scheme is also discussed in this paper. Elimination of ranging data that has large ranging error is proposed in addition to interference cancellation scheme and slotted ALOHA scheme with code sensing in order to improve the performance of positioning. From the simulation results, the positioning error can be mitigated by applying these proposed techniques.

  • Cryptanalysis and Improvement of a Provably Secure RFID Ownership Transfer Protocol

    Daisuke MORIYAMA  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    130-138

    Radio Frequency Identifications (RFID) are useful low-cost devices for identification or authentication systems through wireless communication. The ownership of the RFID tag is frequently changed in the life cycle of the tag, it may fall in to the hands of a malicious adversary. The privacy problem in this situation is studied in the RFID ownership transfer protocol. However, almost all previous works provide only heuristic analysis and many protocols are broken. Elkhiyaoui et al. defined the security model for RFID ownership transfer protocols and proposed the detailed security proof to their protocol, but we show that their protocol does not provide enough privacy and cover the realistic attack. We investigate a suitable security model for RFID ownership transfer protocols and provide a new provably secure RFID ownership transfer protocol.

  • Approximately-Zero Correlation Zone Sequence Set

    Sayuri FUKUI  Masanori HAMAMURA  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    159-166

    An algorithm that finds a set of real-valued approximately-zero correlation zone (AZCZ) sequences is proposed on the basis of the concept of feedback-controlled direct-sequence code-division multiple access (FC/DS-CDMA). It is known that ordinary algorithms can construct low correlation zone (LCZ) and zero correlation zone (ZCZ) sequence sets in which the choices of the number of sequences, sequence length, and LCZ or ZCZ length are limited. It is shown that the proposed algorithm finds AZCZ sequence sets by a numerical method under arbitrary conditions. The properties of AZCZ sequence sets are evaluated in terms of the autocorrelation and cross-correlation functions. It is shown that the periodic autocorrelation and cross-correlation functions take small values within a designated AZCZ. It is also shown that we can construct approximately-perfect sequences that have approximately ideal autocorrelation functions and new sequence sets that have multiple AZCZs using the proposed algorithm.

  • Multi-Feature Guided Brain Tumor Segmentation Based on Magnetic Resonance Images

    Ye AI  Feng MIAO  Qingmao HU  Weifeng LI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2015/08/25
      Vol:
    E98-D No:12
      Page(s):
    2250-2256

    In this paper, a novel method of high-grade brain tumor segmentation from multi-sequence magnetic resonance images is presented. Firstly, a Gaussian mixture model (GMM) is introduced to derive an initial posterior probability by fitting the fluid attenuation inversion recovery histogram. Secondly, some grayscale and region properties are extracted from different sequences. Thirdly, grayscale and region characteristics with different weights are proposed to adjust the posterior probability. Finally, a cost function based on the posterior probability and neighborhood information is formulated and optimized via graph cut. Experiment results on a public dataset with 20 high-grade brain tumor patient images show the proposed method could achieve a dice coefficient of 78%, which is higher than the standard graph cut algorithm without a probability-adjusting step or some other cost function-based methods.

  • A Study of Physical Design Guidelines in ThruChip Inductive Coupling Channel

    Li-Chung HSU  Junichiro KADOMOTO  So HASEGAWA  Atsutake KOSUGE  Yasuhiro TAKE  Tadahiro KURODA  

     
    PAPER-Physical Level Design

      Vol:
    E98-A No:12
      Page(s):
    2584-2591

    ThruChip interface (TCI) is an emerging wireless interface in three-dimensional (3-D) integrated circuit (IC) technology. However, the TCI physical design guidelines remain unclear. In this paper, a ThruChip test chip is designed and fabricated for design guidelines exploration. Three inductive coupling interface physical design scenarios, baseline, power mesh, and dummy metal fill, are deployed in the test chip. In the baseline scenario, the test chip measurement results show that thinning chip or enlarging coil dimension can further reduce TCI power. The power mesh scenario shows that the eddy current on power mesh can dramatically reduce magnetic pulse signal and thus possibly cause TCI to fail. A power mesh splitting method is proposed to effectively suppress eddy current impact while minimizing power mesh structure impact. The simulation results show that the proposed method can recover 77% coupling coefficient loss while only introducing additional 0.5% IR-drop. In dummy metal fill case, dummy metal fill enclosed within TCI coils have no impact on TCI transmission and thus are ignorable.

  • Register-Based Process Virtual Machine Acceleration Using Hardware Extension with Hybrid Execution

    Surachai THONGKAEW  Tsuyoshi ISSHIKI  Dongju LI  Hiroaki KUNIEDA  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E98-A No:12
      Page(s):
    2505-2518

    The Process Virtual Machine (VM) is typical software that runs applications inside operating systems. Its purpose is to provide a platform-independent programming environment that abstracts away details of the underlying hardware, operating system and allows bytecodes (portable code) to be executed in the same way on any other platforms. The Process VMs are implemented using an interpreter to interpret bytecode instead of direct execution of host machine codes. Thus, the bytecode execution is slower than those of the compiled programming language execution. Several techniques including our previous paper, the “Fetch/Decode Hardware Extension”, have been proposed to speed up the interpretation of Process VMs. In this paper, we propose an additional methodology, the “Hardware Extension with Hybrid Execution” to further enhance the performance of Process VMs interpretation and focus on Register-based model. This new technique provides an additional decoder which can classify bytecodes into either simple or complex instructions. With “Hybrid Execution”, the simple instruction will be directly executed on hardware of native processor. The complex instruction will be emulated by the “extra optimized bytecode software handler” of native processor. In order to eliminate the overheads of retrieving and storing operand on memory, we utilize the physical registers instead of (low address) virtual registers. Moreover, the combination of 3 techniques: Delay scheduling, Mode predictor HW and Branch/goto controller can eliminate all of the switching mode overheads between native mode and bytecode mode. The experimental results show the improvements of execution speed on the Arithmetic instructions, loop & conditional instructions and method invocation & return instructions can be achieved up to 16.9x, 16.1x and 3.1x respectively. The approximate size of the proposed hardware extension is 0.04mm2 (or equivalent to 14.81k gates) and consumes an additional power of only 0.24mW. The stated results are obtained from logic synthesis using the TSMC 90nm technology @ 200MHz.

8061-8080hit(42807hit)