The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

8481-8500hit(42807hit)

  • Underwater Radiated Signal Analysis in the Modulation Spectrogram Domain

    Hyunjin CHO  Junseok LIM  Bonhwa KU  Myoungjun CHEONG  Iksu SEO  Hanseok KO  Wooyoung HONG  

     
    PAPER-Engineering Acoustics

      Vol:
    E98-A No:8
      Page(s):
    1751-1759

    Passive SONAR receives a mixed form of signal that is a combination of continuous and discrete line-component spectrum signals. The conventional algorithms, DEMON and LOFAR, respectively target each type of signal, but do not consider the other type of signal also present in the practical environment. Thus when features from two types of signals are presented at the same time, analysis results may cause confusion. In this paper, we propose an integrated analysis algorithm for underwater signals using the modulation spectrogram domain. The proposed domain presents the visual difference between the different types of signal, and therefore can prevent confusion that would otherwise be feasible. Moreover, the proposed algorithm is more efficient than multiband DEMON in terms of computation complexity, while in colored ambient noise environment, it has similar performance to conventional DEMON and LOFAR. We prove the validity of the proposed algorithm through the relevant experiments with synthesized signal and actual underwater recordings.

  • A Performance Study to Ensure Emergency Communications during Large Scale Disasters Using Satellite/Terrestrial Integrated Mobile Communications Systems

    Kazunori OKADA  Takayuki SHIMAZU  Akira FUJIKI  Yoshiyuki FUJINO  Amane MIURA  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1627-1636

    The Satellite/Terrestrial Integrated mobile Communication System (STICS), which allows terrestrial mobile phones to communicate directly through a satellite, has been studied [1]. Satellites are unaffected by the seismic activity that causes terrestrial damage, and therefore, the STICS can be expected to be a measure that ensures emergency call connection. This paper first describes the basic characteristics of call blocking rates of terrestrial mobile phone systems in areas where non-functional base stations are geographically clustered, as investigated through computer simulations that showed an increased call blocking rate as the number of non-functional base stations increased. Further simulations showed that restricting the use of the satellite system for emergency calls only ensures the STICS's capacity to transmit emergency communications; however, these simulations also revealed a weakness in the low channel utilization rate of the satellite system [2]. Therefore, in this paper, we propose increasing the channel utilization rate with a priority channel framework that divides the satellite channels between priority channels for emergency calls and non-priority channels that can be available for emergency or general use. Simulations of this priority channel framework showed that it increased the satellite system's channel utilization rate, while continuing to ensure emergency call connection [3]. These simulations showed that the STICS with a priority channel framework can provide efficient channel utilization and still be expected to provide a valuable secondary measure to ensure emergency communications in areas with clustered non-functional base stations during large-scale disasters.

  • A Cooking-Step Scheduling Algorithm with Guidance System for Homemade Cooking

    Yukiko MATSUSHIMA  Nobuo FUNABIKI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2015/05/18
      Vol:
    E98-D No:8
      Page(s):
    1439-1448

    Homemade cooking plays a key role for a healthy and cost-efficient life. Unfortunately, preparing multiple dishes is generally time-consuming. In this paper, an algorithm is proposed to minimize the cooking time by scheduling the cooking-step of multiple dishes. The cooking procedure of a dish is divided into a sequence of six types of cooking-steps to consider the constraints in cooks and cooking utensils in a kitchen. A cooking model is presented to optimize the cooking-step schedule and estimate the cooking time for a given starting order of dishes under various constraints of cooks and utensils. Then, a high-quality schedule is sought by repeating the generation of a new order and the model application based on exhaustive search and simulated annealing. Our simulation results and cooking experiments confirm the effectiveness of our proposal.

  • Human Body Affected Small-Scale Fading for Indoor UWB Channel

    Young-Hoon KIM  Jae-Hyun LEE  Jung Yong LEE  Seong-Cheol KIM  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:8
      Page(s):
    1589-1597

    This paper deals with the small-scale fading distribution for UWB channels in the absence and presence of human bodies in indoor line-of-sight (LOS) environments and performance analysis of UWB systems considering the small-scale fading distribution. To obtain small-scale fading statistics, the channel measurements are performed in five representative environments that have different structure and size while locating the receiver (Rx) antenna on 49 (7×7 grid) local points with a fixed transmitter (Tx) antenna in each environment. The measured channel data are processed by a vector network analyzer and the target frequency bands range from 3 to 4.6GHz. From the measured data, we find the best fitted channel model among several typical theoretical distribution models such as Lognormal, Nakagami, and Weibull distributions, showing good agreement with the empirical channel data. We analyze the amplitude variation of the small-scale fading distribution in the absence and presence of human bodies. The results show that the small-scale fading statistics are best described by Weibull distribution and the two parameters of the distribution that determine the shape and the scale of the distribution depend on whether or not human bodies exist. We modeled and analyzed two parameters at different excess delays for all environments. Based on the measured small-scale fading distribution, this paper deals with the performance of UWB system using Rake receivers and also compares the performance with the existing channel model. The results suggest that the small-scale fading distribution in the absence and the presence of human bodies in indoor LOS environments should be considered when assessing the performance of UWB systems.

  • Robust Beamforming for Joint Transceiver Design in K-User Interference Channel over Energy Efficient 5G

    Shidang LI  Chunguo LI  Yongming HUANG  Dongming WANG  Luxi YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:8
      Page(s):
    1860-1864

    Considering worse-case channel uncertainties, we investigate the robust energy efficient (EE) beamforming design problem in a K-user multiple-input-single-output (MISO) interference channel. Our objective is to maximize the worse-case sum EE under individual transmit power constraints. In general, this fractional programming problem is NP-hard for the optimal solution. To obtain an insight into the problem, we first transform the original problem into its lower bound problem with max-min and fractional form by exploiting the relationship between the user rate and the minimum mean square error (MMSE) and using the min-max inequality. To make it tractable, we transform the problem of fractional form into a subtractive form by using the Dinkelbach transformation, and then propose an iterative algorithm using Lagrangian duality, which leads to the locally optimal solution. Simulation results demonstrate that our proposed robust EE beamforming scheme outperforms the conventional algorithm.

  • Throughput Capacity Study for MANETs with Erasure Coding and Packet Replication

    Bin YANG  Yin CHEN  Guilin CHEN  Xiaohong JIANG  

     
    PAPER-Network

      Vol:
    E98-B No:8
      Page(s):
    1537-1552

    Throughput capacity is of great importance for the design and performance optimization of mobile ad hoc networks (MANETs). We study the exact per node throughput capacity of MANETs under a general 2HR-(g, x, f) routing scheme which combines erasure coding and packet replication techniques. Under this scheme, a source node first encodes a group of g packets into x (x ≥ g) distinct coded packets, and then replicates each of the coded packets to at most f relay nodes which help to forward them to the destination node. All original packets can be recovered once the destination node receives any g distinct coded packets of the group. To study the throughput capacity, we first construct two absorbing Markov chain models to depict the complicated packet delivery process under the routing scheme. Based on these Markov models, an analytical expression of the throughput capacity is derived. Extensive simulation and numerical results are provided to verify the accuracy of theoretical results on throughput capacity and to illustrate how system parameters will affect the throughput capacity in MANETs. Interestingly, we find that the replication of coded packets can improve the throughput capacity when the parameter x is relatively small.

  • Adaptive Multi-Rate Designs and Analysis for Hybrid FSO/RF Systems over Fading Channels

    Vuong V. MAI  Anh T. PHAM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1660-1671

    This paper proposes the concept of adaptive multi-rate (AMR), which jointly employs switching between two links and adaptive rate on each link, for hybrid free-space optical/radio-frequency (FSO/RF) systems. Moreover, we present the cross-layer design of AMR switching, which is based on both the physical and link layers with an automatic-repeat request (ARQ) scheme. We develop an analytical framework based on a Markov chain model for system performance analysis. System performance metrics, including frame-error rate, goodput and link switching probability, are analytically studied over fading channels. Numerical results quantitatively show how the proposal significantly outperforms conventional ones with physical layer-based design and/or fixed-rate switching operation.

  • Generation of Arbitrarily Patterned Pulse Trains in the THz Range by Spectral Synthesis of Optical Combs

    Isao MOROHASHI  Takahide SAKAMOTO  Norihiko SEKINE  Tetsuya KAWANISHI  Akifumi KASAMATSU  Iwao HOSAKO  

     
    PAPER-MWP Subsystem

      Vol:
    E98-C No:8
      Page(s):
    793-798

    We demonstrated generation of arbitrarily patterned optical pulse trains and frequency tunable terahertz (THz) pulses by spectral synthesis of optical combs generated by a Mach-Zehnder-modulator-based flat comb generator (MZ-FCG). In our approach, THz pulses were generated by photomixing of a multi-tone signal, which is elongated pulse train, and a single-tone signal. Both signals were extracted from a comb signal by using optical tunable bandpass filters. In the case of optical pulse train generation, the MZ-FCG generated comb signals with 10 GHz-spacing and 330 GHz-width, which was converted to a 2.85 ps-width pulse train by chirp compensation using a single-mode fiber. By combining the MZ-FCG with a pulse picker composed of a 40 Gbps intensity modulator, divided pulse trains and arbitrarily bit sequences were successfully generated. The single-mode light was extracted by an optical bandpass filter and the band-controlled pulse train was extracted by an optical bandpass filter. By photomixing them, a THz pulse was successfully generated. In the case of THz pulse generation, by photomixing a single-tone and a multi-tone signals extracted by tunable bandpass filters, THz pulses with a center frequency of 300 GHz was successfully generated. Furthermore, frequency tunability of the center frequency was also demonstrated.

  • Effect of Load-Balancing against Disaster Congestion with Actual Subscriber Extension Telephone Numbers

    Daisuke SATOH  Hiromichi KAWANO  Yoshiyuki CHIBA  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1637-1646

    We demonstrated that load balancing using actual subscriber extension numbers was practical and effective against traffic congestion after a disaster based on actual data. We investigated the ratios of the same subscriber extension numbers in each prefecture and found that most of them were located almost evenly all over the country without being concentrated in a particular area. The ratio of every number except for the fourth-last digit in the last group of four numbers in a telephone number was used almost equally and located almost evenly all over the country. Tolerance against overload in the last, second-, and third-last single digits stays close to that in the ideal situation if we assume that each session initiation protocol server has a capacity in accordance with the ratio of each number on every single digit in the last group of four numbers in Japan. Although tolerance against overload in double-, triple-, and quadruple-digit numbers does not stay close to that in the ideal situation, it still remains sufficiently high in the case of double- and triple-digit numbers. Although tolerance against overload in the quadruple-digit numbers becomes low, disaster congestion is still not likely to occur in almost half of the area of Japan (23 out of 47 prefectures).

  • Selective Attention Mechanisms for Visual Quality Assessment

    Ulrich ENGELKE  

     
    INVITED PAPER

      Vol:
    E98-A No:8
      Page(s):
    1681-1688

    Selective visual attention is an integral mechanism of the human visual system that is often neglected when designing perceptually relevant image and video quality metrics. Disregarding attention mechanisms assumes that all distortions in the visual content impact equally on the overall quality perception, which is typically not the case. Over the past years we have performed several experiments to study the effect of visual attention on quality perception. In addition to gaining a deeper scientific understanding of this matter, we were also able to use this knowledge to further improve various quality prediction models. In this article, I review our work with the aim to increase awareness on the importance of visual attention mechanisms for the effective design of quality prediction models.

  • Partial Encryption Method That Enhances MP3 Security

    Twe Ta OO  Takao ONOYE  Kilho SHIN  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:8
      Page(s):
    1760-1768

    The MPEG-1 layer-III compressed audio format, which is widely known as MP3, is the most popular for audio distribution. However, it is not equipped with security features to protect the content from unauthorized access. Although encryption ensures content security, the naive method of encrypting the entire MP3 file would destroy compliance with the MPEG standard. In this paper, we propose a low-complexity partial encryption method that is embedded during the MP3 encoding process. Our method reduces time consumption by encrypting only the perceptually important parts of an MP3 file rather than the whole file, and the resulting encrypted file is still compatible with the MPEG standard so as to be rendered by any existing MP3 players. For full-quality rendering, decryption using the appropriate cryptographic key is necessary. Moreover, the effect of encryption on audio quality can be flexibly controlled by adjusting the percentage of encryption. On the basis of this feature, we can realize the try-before-purchase model, which is one of the important business models of Digital Rights Management (DRM): users can render encrypted MP3 files for trial and enjoy the contents in original quality by purchasing decryption keys. From our experiments, it turns out that encrypting 2-10% of MP3 data suffices to generate trial music, and furthermore file size increasing after encryption is subtle.

  • Iris Recognition Based on Local Gabor Orientation Feature Extraction

    Jie SUN  Lijian ZHOU  Zhe-Ming LU  Tingyuan NIE  

     
    LETTER-Pattern Recognition

      Pubricized:
    2015/04/22
      Vol:
    E98-D No:8
      Page(s):
    1604-1608

    In this Letter, a new iris recognition approach based on local Gabor orientation feature is proposed. On one hand, the iris feature extraction method using the traditional Gabor filters can cause time-consuming and high-feature dimension. On the other hand, we can find that the changes of original iris texture in angle and radial directions are more obvious than the other directions by observing the iris images. These changes in the preprocessed iris images are mainly reflected in vertical and horizontal directions. Therefore, the local directional Gabor filters are constructed to extract the horizontal and vertical texture characteristics of iris. First, the iris images are preprocessed by iris and eyelash location, iris segmentation, normalization and zooming. After analyzing the variety of iris texture and 2D-Gabor filters, we construct the local directional Gabor filters to extract the local Gabor features of iris. Then, the Gabor & Fisher features are obtained by Linear Discriminant Analysis (LDA). Finally, the nearest neighbor method is used to recognize the iris. Experimental results show that the proposed method has better iris recognition performance with less feature dimension and calculation time.

  • Base Station Cooperative Multiuser MIMO Using Block-Diagonalized Random Beamforming with Online Update

    Nobuhide NONAKA  Anass BENJEBBOUR  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1622-1629

    This paper proposes applying random (opportunistic) beamforming to base station (BS) cooperative multiuser multiple-input multiple-output (MIMO) transmission. This proposal comprises two parts. First, we propose a block-diagonalized random unitary beamforming matrix. The proposed beamforming matrix achieves better throughput distribution compared to the purely random unitary beamforming matrix when the average path loss determined by distance-dependent loss and shadowing loss is largely different among transmitter antennas, which is true in BS cooperative MIMO. Second, we propose an online update algorithm for a random beamforming matrix to improve the throughput compared to the purely random and channel-independent beamforming matrix generation, especially when the number of users is low. Different from conventional approaches, the proposed online update algorithm does not increase the overhead of the reference signal transmission and control delay. Simulation results show the effectiveness of the proposed method using a block-diagonalized random unitary beamforming matrix with online updates in a BS cooperative multiuser MIMO scenario.

  • Perceptually Optimized Missing Texture Reconstruction via Neighboring Embedding

    Takahiro OGAWA  Miki HASEYAMA  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1709-1717

    Perceptually optimized missing texture reconstruction via neighboring embedding (NE) is presented in this paper. The proposed method adopts the structural similarity (SSIM) index as a measure for representing texture reconstruction performance of missing areas. This provides a solution to the problem of previously reported methods not being able to perform perceptually optimized reconstruction. Furthermore, in the proposed method, a new scheme for selection of the known nearest neighbor patches for reconstruction of target patches including missing areas is introduced. Specifically, by monitoring the SSIM index observed by the proposed NE-based reconstruction algorithm, selection of known patches optimal for the reconstruction becomes feasible even if target patches include missing pixels. The above novel approaches enable successful reconstruction of missing areas. Experimental results show improvement of the proposed method over previously reported methods.

  • Performance of Outer-Loop Control for Adaptive Modulation and Coding Based on Mutual Information in OFDM MIMO SDM

    Teppei EBIHARA  Yasuhiro KUGE  Hidekazu TAOKA  Nobuhiko MIKI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1506-1517

    This paper presents the performance of outer-loop control for selecting the best modulation and coding scheme (MCS) based on mutual information (MI) for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) spatial division multiplexing (SDM). We propose an outer-loop control scheme that updates the measured MI per information bit value for selecting the best MCS from a mapping table that associates the block error rate (BLER) and MI per bit instead of directly updating the MCS selection threshold so that the required BLER is satisfied. The proposed outer-loop control is applicable to continuous data transmission including intermittent transmission with a short blank period. Moreover, we compare the measured BLER and throughput performance for two types of outer-loop control methods: instantaneous block error detection and moving-average BLER detection. In the paper, we use maximum likelihood detection (MLD) for MIMO SDM. Computer simulation results optimize the step size for the respective outer-loop control schemes for selecting the best MCS that achieves the higher throughput and the target BLER simultaneously. Computer simulation results also show that by using the most appropriate step size, the outer-loop control method based on the instantaneous block error detection of each physical resource block is more appropriate than that based on the moving-average BLER detection from the viewpoints of achieving the target BLER more accurately and higher throughput.

  • Load Balancing with Rate-Based Path Selection for End-to-End Multipath Networks

    Yu NAKAYAMA  

     
    PAPER-Network

      Vol:
    E98-B No:8
      Page(s):
    1526-1536

    With shortest path bridging MAC (SPBM), shortest path trees are computed based on link metrics from each node to all other participating nodes. When an edge bridge receives a frame, it selects a path along which to forward the frame to its destination node from multiple shortest paths. Blocking ports are eliminated to allow full use of the network links. This approach is expected to use network resources efficiently and to simplify the operating procedure. However, there is only one multipath distribution point in the SPBM network. This type of network can be defined as an end-to-end multipath network. Edge bridges need to split flows to achieve the load balancing of the entire network. This paper proposes a rate-based path selection scheme that can be employed for end-to-end multipath networks including SPBM. The proposed scheme assumes that a path with a low average rate will be congested because the TCP flow rates decrease on a congested path. When a new flow arrives at an edge bridge, it selects the path with the highest average rate since this should provide the new flow with the highest rate. The performance of the proposed scheme is confirmed by computer simulations. The appropriate timeout value is estimated from the expected round trip time (RTT). If an appropriate timeout value is used, the proposed scheme can realize good load balancing. The proposed scheme improves the efficiency of link utilization and throughput fairness. The performance is not affected by differences in the RTT or traffic congestion outside the SPBM network.

  • Codeword Metric Calculation Scheme for Outer Code in Overloaded MIMO-OFDM System

    Yoshihito DOI  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:8
      Page(s):
    1598-1605

    This paper presents a codeword metric calculation scheme for two step joint decoding of block coded signals in overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. A two step joint decoding scheme has been proposed for the complexity reduction as compared to joint maximum likelihood decoding in overloaded MIMO systems. Outer codes are widely used in wireless LANs such as IEEE802.11n. However, the two step joint decoding has not been combined with an outer code. In the first step of the two step joint decoding candidate codewords for metric calculation in the second step are selected. The selection of the candidate codewords in the inner block code may not always be able to provide the metric of a binary coded symbol for the outer code. Moreover, a bit flipping based codeword selection scheme in the two step joint decoding may not always provide the second best candidate codeword. Thus, in the proposed scheme the metric of the binary coded symbol calculated in the first step is reused in the second step of two step joint decoding. It is shown that the two step joint decoding with the proposed metric calculation scheme achieves better performance than that of the joint decoding with the bit flipping based codeword calculation scheme and reduces the complexity by about 0.013 for 4 signal streams with the cost of bit error rate degradation within 0.5dB.

  • Adaptive Communication System with Renewable Energy Source

    Qishen WU  Sho SUZUKI  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  

     
    PAPER-Network

      Vol:
    E98-B No:8
      Page(s):
    1571-1579

    This paper introduces a communication system model with renewable power supply. As we assumed a battery-free microgrid system with conventional power as a backup power supply, we propose a method of power state and data transmission scheduling for delay-tolerant communication networks, which reduces conventional power consumption by operating adaptively to changes in renewable power. We found through computer simulations that the proposed method efficiently reduced conventional power consumption.

  • Uplink Non-Orthogonal Multiple Access (NOMA) with Single-Carrier Frequency Division Multiple Access (SC-FDMA) for 5G Systems

    Anxin LI  Anass BENJEBBOUR  Xiaohang CHEN  Huiling JIANG  Hidetoshi KAYAMA  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1426-1435

    Non-orthogonal multiple access (NOMA) utilizing the power domain and advanced receiver has been considered as one promising multiple access technology for further cellular enhancements toward the 5th generation (5G) mobile communications system. Most of the existing investigations into NOMA focus on the combination of NOMA with orthogonal frequency division multiple access (OFDMA) for either downlink or uplink. In this paper, we investigate NOMA for uplink with single carrier-frequency division multiple access (SC-FDMA) being used. Differently from OFDMA, SC-FDMA requires consecutive resource allocation to a user equipment (UE) in order to achieve low peak to average power ratio (PAPR) transmission by the UE. Therefore, sophisticated designs of scheduling algorithm for NOMA with SC-FDMA are needed. To this end, this paper investigates the key issues of uplink NOMA scheduling such as UE grouping method and resource widening strategy. Because the optimal schemes have high computational complexity, novel schemes with low computational complexity are proposed for practical usage for uplink resource allocation of NOMA with SC-FDMA. On the basis of the proposed scheduling schemes, the performance of NOMA is investigated by system-level simulations in order to provide insights into the suitability of using NOMA for uplink radio access. Key issues impacting NOMA performance are evaluated and analyzed, such as scheduling granularity, UE number and the combination with fractional frequency reuse (FFR). Simulation results verify the effectiveness of the proposed algorithms and show that NOMA is a promising radio access technology for 5G systems.

  • Estimation of the Port Number Consumption of Web Browsing

    Gábor LENCSE  

     
    PAPER-Internet

      Vol:
    E98-B No:8
      Page(s):
    1580-1588

    Due to the depletion of the public IPv4 address pool, Internet service providers will not be able to supply their new customers with public IPv4 addresses in the near future. Either they give private IPv4 addresses and use carrier grade NAT (CGN) or they move towards IPv6 and provide NAT64 service to the IPv6 only clients who want to reach IPv4 only servers. In both cases they must use a stateful NAT/NAT64 solution. When dimensioning a NAT/NAT64 gateway, the port number consumption of the clients is a key factor as the port numbers are 16 bits long and a unique one has to be provided for every session (when using traditional type NAPT, which does not include the destination IP address and port number in the tuple for the identification of TCP sessions) and a single web client may use several hundred sessions and an equal number of port numbers according to literature. In this paper, we present a method for the estimation of the port number consumption of web browsing. The method is based on the port number consumption measurements of the most popular web sites and their combination using the number of the visitors of the web sites as weight factors. We propose the resulting curve as an approximation of a general profile of the average port number consumption of web browsers after the first click, but without taking into consideration the effect of the web users' browsing behavior. We also discuss the case of the extended NAPT, which can reuse the source port numbers towards different destination IP addresses and/or destination port numbers. We propose a formula and give measurement results for the extended NAPT gateways, too. We disclose the measurement method in detail and provide the measurement scripts in Linux, too.

8481-8500hit(42807hit)