The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

10041-10060hit(42807hit)

  • Linear Complexity of Generalized Cyclotomic Quaternary Sequences with Period pq

    Dan-dan LI  Qiao-yan WEN  Jie ZHANG  Zu-ling CHANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:5
      Page(s):
    1153-1158

    Pseudo-random sequences with high linear complexity play important roles in many domains. We give linear complexity of generalized cyclotomic quaternary sequences with period pq over Z4 via the weights of its Fourier spectral sequence. The results show that such sequences have high linear complexity.

  • FOREWORD Open Access

    Yoshinao ISOBE  

     
    FOREWORD

      Vol:
    E97-D No:5
      Page(s):
    1139-1139
  • Improvements of Local Descriptor in HOG/SIFT by BOF Approach

    Zhouxin YANG  Takio KURITA  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:5
      Page(s):
    1293-1303

    Numerous studies have been focusing on the improvement of bag of features (BOF), histogram of oriented gradient (HOG) and scale invariant feature transform (SIFT). However, few works have attempted to learn the connection between them even though the latter two are widely used as local feature descriptor for the former one. Motivated by the resemblance between BOF and HOG/SIFT in the descriptor construction, we improve the performance of HOG/SIFT by a) interpreting HOG/SIFT as a variant of BOF in descriptor construction, and then b) introducing recently proposed approaches of BOF such as locality preservation, data-driven vocabulary, and spatial information preservation into the descriptor construction of HOG/SIFT, which yields the BOF-driven HOG/SIFT. Experimental results show that the BOF-driven HOG/SIFT outperform the original ones in pedestrian detection (for HOG), scene matching and image classification (for SIFT). Our proposed BOF-driven HOG/SIFT can be easily applied as replacements of the original HOG/SIFT in current systems since they are generalized versions of the original ones.

  • An Efficient Strategy for Bit-Quad-Based Euler Number Computing Algorithm

    Bin YAO  Hua WU  Yun YANG  Yuyan CHAO  Atsushi OHTA  Haruki KAWANAKA  Lifeng HE  

     
    LETTER-Pattern Recognition

      Vol:
    E97-D No:5
      Page(s):
    1374-1378

    The Euler number of a binary image is an important topological property for pattern recognition, and can be calculated by counting certain bit-quads in the image. This paper proposes an efficient strategy for improving the bit-quad-based Euler number computing algorithm. By use of the information obtained when processing the previous bit quad, the number of times that pixels must be checked in processing a bit quad decreases from 4 to 2. Experiments demonstrate that an algorithm with our strategy significantly outperforms conventional Euler number computing algorithms.

  • Developing an HMM-Based Speech Synthesis System for Malay: A Comparison of Iterative and Isolated Unit Training

    Mumtaz Begum MUSTAFA  Zuraidah Mohd DON  Raja Noor AINON  Roziati ZAINUDDIN  Gerry KNOWLES  

     
    PAPER-Speech and Hearing

      Vol:
    E97-D No:5
      Page(s):
    1273-1282

    The development of an HMM-based speech synthesis system for a new language requires resources like speech database and segment-phonetic labels. As an under-resourced language, Malay lacks the necessary resources for the development of such a system, especially segment-phonetic labels. This research aims at developing an HMM-based speech synthesis system for Malay. We are proposing the use of two types of training HMMs, which are the benchmark iterative training incorporating the DAEM algorithm and isolated unit training applying segment-phonetic labels of Malay. The preferred method for preparing segment-phonetic labels is the automatic segmentation. The automatic segmentation of Malay speech database is performed using two approaches which are uniform segmentation that applies fixed phone duration, and a cross-lingual approach that adopts the acoustic model of English. We have measured the segmentation error of the two segmentation approaches to ascertain their relative effectiveness. A listening test was used to evaluate the intelligibility and naturalness of the synthetic speech produced from the iterative and isolated unit training. We also compare the performance of the HMM-based speech synthesis system with existing Malay speech synthesis systems.

  • FOREWORD Open Access

    Yuzo OHNO  

     
    FOREWORD

      Vol:
    E97-C No:5
      Page(s):
    392-392
  • FOREWORD Open Access

    Saeko MATSUURA  

     
    FOREWORD

      Vol:
    E97-D No:5
      Page(s):
    1016-1016
  • Evaluation of Large-Sized LCD Touch Panel Using Differential Sensing Circuit and Algorithm

    Sang Hyuck BAE  Jaewon PARK  CheolSe KIM  SeokWoo LEE  Woosup SHIN  Yong-Surk LEE  

     
    LETTER-Human-computer Interaction

      Vol:
    E97-D No:5
      Page(s):
    1363-1366

    In this letter, we evaluate the parasitic capacitance of an LCD touch panel, the description and implementation of a differential input sensing circuit, and an algorithm suitable for large LCDs with integrated touch function. When projected capacitive touch sensors are integrated with a liquid crystal display, the sensors have a very large amount of parasitic capacitance with the display elements. A differential input sensing circuit can detect small changes in the mutual capacitance from the touch of a finger. The circuit is realized using discrete components, and for the evaluation of a large-sized LCD touch panel, a printed circuit board touch panel is used.

  • Development of an Immunity Test System for Safety of Personal Care Robots

    Masayuki MURAKAMI  Hiroyasu IKEDA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:5
      Page(s):
    1030-1043

    Although many companies have developed robots that assist humans in the activities of daily living, safety requirements and test methods for such robots have not been established. Given the risk associated with a robot malfunctioning in the human living space, from the viewpoints of safety and EMC, it is necessary that the robot does not create a hazardous situation even when exposed to possibly severe electromagnetic disturbances in the operating environment. Thus, in immunity tests for personal care robots, the safety functions should be more rigorously tested than the other functions, and be repeatedly activated in order to ascertain that the safety functions are not lost in the presence of electromagnetic disturbances. In this paper, immunity test procedures for personal care robots are proposed that take into account functional safety requirements. A variety of test apparatuses are presented, which were built for activating the safety functions of robots, and detecting whether they were in a safe state. The practicality of the developed immunity test system is demonstrated using actual robots.

  • DC Operating Point Analysis of Transistor Circuits Using the Variable-Gain Homotopy Method

    Kiyotaka YAMAMURA  Takuya MIYAMOTO  

     
    PAPER-Nonlinear Problems

      Vol:
    E97-A No:5
      Page(s):
    1042-1050

    Homotopy methods are known to be effective methods for finding DC operating points of nonlinear circuits with the theoretical guarantee of global convergence. There are several types of homotopy methods; as one of the most efficient methods for solving bipolar transistor circuits, the variable-gain homotopy (VGH) method is well-known. In this paper, we propose an efficient VGH method for solving bipolar and MOS transistor circuits. We also show that the proposed method converges to a stable operating point with high possibility from any initial point. The proposed method is not only globally convergent but also more efficient than the conventional VGH methods. Moreover, it can easily be implemented in SPICE.

  • Authenticated Distance Bounding Protocol with Improved FAR: Beyond the Minimal Bound of FAR

    Taek-Young YOUN  Dowon HONG  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:5
      Page(s):
    930-935

    Distance bounding protocols permit a verifier to compute the distance to a prover by measuring the execution time of n rounds of challenge-response authentication. Many protocols have been proposed to reduce the false acceptance rate of the challenge-response procedure. Until now, it has been widely believed that the lowest bound of the false acceptance rate is (1/2)n when n is the number of rounds and the prover can send only one response bit for each round. In this paper, we propose a new distance bounding protocol whose false acceptance rate is (1/3)n against the distance fraud attacks and the mafia fraud attacks. To reduce the false acceptance rate, we use two challenge bits for each iteration and introduce a way of expressing three cases with the use of only one response bit, the same bit length as existing protocols. Our protocol is the first distance bounding protocol whose false acceptance rate is lower than the currently believed minimal bound without increasing the number of response bits for each round.

  • Reconfigurable Dynamic Logic Circuit Generating t-Term Boolean Functions Based on Double-Gate CNTFETs

    Manabu KOBAYASHI  Hiroshi NINOMIYA  Yasuyuki MIURA  Shigeyoshi WATANABE  

     
    PAPER-Circuit Theory

      Vol:
    E97-A No:5
      Page(s):
    1051-1058

    Hassoune and O'Connor proposed a dynamically reconfigurable dynamic logic circuit (DRDLC) that generates Boolean functions by using double-gate (DG) carbon nanotube (CNT) FETs, which have an ambipolar property. O'Connor et al. proposed a DRDLC that generates 14 Boolean functions asing two Boolean inputs with seven transistors. Furthermore, DRDLCs that generates all 16 Boolean functions have been proposed. In this paper, we focus on the design of a dynamic logic circuit with n Boolean inputs. First, we show a DRDLC that generates the monomial Boolean functions. Next, we propose a DRDLC that generates the whole set of Boolean functions consisting of t terms or less. Finally, we report the number of Boolean functions generated by the proposed DRDLC.

  • Cross-Correlation Distribution between a p-Ary m-Sequence and Its Decimated Sequence with Decimation Factor $d= rac{(p^{m}+1)^2}{2(p^e+1)}$

    Yongbo XIA  Shaoping CHEN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E97-A No:5
      Page(s):
    1103-1112

    Let p be an odd prime and m be any positive integer. Assume that n=2m and e is a positive divisor of m with m/e being odd. For the decimation factor $d= rac{(p^{m}+1)^2}{2(p^e+1)}$, the cross-correlation between the p-ary m-sequence ${tr_1^n(alpha^i)}$ and its decimated sequence ${tr_1^n(alpha^{di})}$ is investigated. The value distribution of the correlation function is completely determined. The results in this paper generalize the previous results given by Choi, Luo and Sun et al., where they considered some special cases of the decimation factor d with a restriction that m is odd. Note that the integer m in this paper can be even or odd. Thus, the decimation factor d here is more flexible than the previous ones. Moreover, our method for determining the value distribution of the correlation function is different from those adopted by Luo and Sun et al. in that we do not need to calculate the third power sum of the correlation function, which is usually difficult to handle.

  • Phase Synchronization for MIMO Radars in the Absence of Channel Reciprocity

    Kwanggoo YEO  Hyuk-soo SHIN  Hoon-gee YANG  Young-seek CHUNG  Myung-deuk JEONG  Wonzoo CHUNG  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:5
      Page(s):
    1130-1135

    This letter presents a novel phase synchronization algorithm for a MIMO radar system in order to overcome the limitation of the existing algorithms relying on channel reciprocity, or line-of-sight, assumption between radar elements. The proposed algorithm is capable of synchronizing local oscillator phases among radar elements even if line-of-sight communication links are not available. Furthermore, the proposed algorithm exhibits robust MSE performance in the presence of frequency estimation error. The performance of the proposed algorithm was analyzed theoretically and verified by simulations.

  • Dynamic Spectrum Access Based on Stochastic Differential Games

    Zhonggui MA  Hongbo WANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:5
      Page(s):
    1087-1093

    Dynamic spectrum access is the key approach in cognitive wireless regional area networks, and it is adopted by secondary users to access the licensed radio spectrum opportunistically. In order to realize real-time secondary spectrum usage, a dynamic spectrum access model based on stochastic differential games is proposed to realize dynamic spectrum allocation; a Nash equilibrium solution to the model is given and analyzed in this paper. From an overall perspective, the relationships between available spectrum percentage and the spectrum access rate are studied. Changes in the available spectrum percentage of the cognitive wireless regional area networks involve a deterministic component and a stochastic component which depends upon an r-dimensional Wiener process. The Wiener process represents an accumulation of random influences over the interval, and it reflects stochastic and time-varying properties of the available spectrum percentage. Simulation results show that the dynamic spectrum access model is efficient, and it reflects the time-varying radio frequency environment. Differential games are useful tools for the spectrum access and management in the time-varying radio environment.

  • Subcarrier Intensity Modulation/Spatial Modulation for Optical Wireless Communications

    Yan CHENG  Seung-Hoon HWANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:5
      Page(s):
    1044-1049

    In this paper, we investigate a combination scheme of subcarrier intensity-modulation (SIM) with spatial modulation (SM) for optical wireless communication. Using computer simulation, the performances of the proposed SIM/SM scheme are investigated and compared with those of the conventional SIM scheme in the additive white gaussian noise (AWGN) as well as in outdoor environment with turbulence induced fading characteristics. Numerical results show that the proposed SIM/SM scheme can outperform the conventional SIM in an environment with different spectral efficiencies. When the spectral efficiency is varied from 2bits/s/Hz to 4bits/s/Hz, an Eb/N0 gain of 2dB to 5dB is achieved, when the bit error rate of 10-5 is maintained. It shows that the employment of SM may further improve the power efficiency of SIM, when the number of subcarriers increases according to the spectral efficiency. When the spectral efficiency is 4bits/s/Hz, the SIM/SM scheme for 0.5 of log-irradiance variance in the log-normal turbulence channel shows the same performance as SIM with variance of 0.3. This means that the SIM/SM can be an alternative choice in even worse environments.

  • A Distributed Mechanism for Probing Overlay Path Bandwidth Using Local Information Exchange

    Tien Hoang DINH  Go HASEGAWA  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E97-B No:5
      Page(s):
    981-995

    Available bandwidth, along with latency and packet loss rate, is an essential metric for the efficient operation of overlay network applications. However, the measurement of available bandwidth creates a larger traffic overhead than other metrics. Measurement conflicts on route-overlapping paths can also seriously degrade measurement accuracy and cause a non-negligible increase in the network load. In this paper, we propose a distributed method for measuring the available bandwidth in overlay networks that can reduce measurement conflicts while maintaining high measurement accuracy at low cost. Our main idea is that neighboring overlay nodes exchange route information to detect overlapping paths and share the measurement results of overlapping paths to configure parameter settings for available bandwidth measurements. Our simulation results show that the relative errors in the measurement results of our method are approximately only 65% of those of the existing method. The measurement accuracy of our method remains better than that of the existing method when the total measurement traffic loads of both methods are equal.

  • High-Sensitive Detection of Electronic Emission through Si-Nanocrystals/Si-Nanocolumnar Structures by Conducting-Probe Atomic Force Microscopy

    Daichi TAKEUCHI  Katsunori MAKIHARA  Mitsuhisa IKEDA  Seiichi MIYAZAKI  Hirokazu KAKI  Tsukasa HAYASHI  

     
    PAPER

      Vol:
    E97-C No:5
      Page(s):
    397-400

    We fabricated highly dense Si nano-columnar structures accompanied with Si nanocrystals on W-coated quartz and characterized their local electrical transport in the thickness direction in a non-contact mode by using a Rh-coated Si cantilever with pulse bias application, in which Vmax, Vmin, and the duty ratio were set at +3.0V, -14V, and 50%, respectively. By applying a pulse bias to the bottom W electrode with respect to a grounded top electrode made of ∼10-nm-thick Au on a sample surface, non-uniform current images in correlation with surface morphologies reflecting electron emission were obtained. The change in the surface potential of the highly dense Si nano-columnar structures accompanied with Si nanocrystals, which were measured at room temperature by using an AFM/Kelvin probe technique, indicated electron injection into and extraction from Si nanocrystals, depending on the tip bias polarity. This result is attributable to efficient electron emission under pulsed bias application due to electron charging from the top electrode to the Si nanocrystals in a positively biased duration at the bottom electrode and subsequent quasi-ballistic transport through Si nanocrystals in a negatively biased duration.

  • Bulk-Heterojunction Organic Solar Cells Based on Phenylene-Thiophene Oligomer and Phenyl-C61-Butyric-Acid Methyl Ester

    Shunjiro FUJII  Takanori OKUKAWA  Zongfan DUAN  Yuichiro YANAGI  Masaya OHZEKI  Tatsuki YANAGIDATE  Yuki ARAI  Gaoyang ZHAO  Yasushiro NISHIOKA  Hiromichi KATAURA  

     
    BRIEF PAPER

      Vol:
    E97-C No:5
      Page(s):
    405-408

    We characterized bulk-heterojunction (BHJ) solar cells using a new phenylene-thiophene oligomer, 3,7-bis[5-(4-n-hexylphenyl)-2-thienyl]dibenzothiophene-5,5-dioxide (37HPTDBTSO), and phenyl-C61-butyric-acid methyl ester (PCBM). Their photovoltaic properties including current-voltage characteristics and spectrum response were investigated. It was found that 37HPTDBTSO is appraised to be valuable electron donor. The characteristics of BHJ solar cells using mixed two donors of 37HPTDBTSO and a polymer of poly(3-hexylthiophene) (P3HT) were further investigated. OSC using the blend film of mixed donars and PCBM achieved a power conversion efficiency of 0.89%.

  • Interval Estimation Method for Decision Making in Wavelet-Based Software Reliability Assessment

    Xiao XIAO  Tadashi DOHI  

     
    PAPER

      Vol:
    E97-D No:5
      Page(s):
    1058-1068

    Recently, the wavelet-based estimation method has gradually been becoming popular as a new tool for software reliability assessment. The wavelet transform possesses both spatial and temporal resolution which makes the wavelet-based estimation method powerful in extracting necessary information from observed software fault data, in global and local points of view at the same time. This enables us to estimate the software reliability measures in higher accuracy. However, in the existing works, only the point estimation of the wavelet-based approach was focused, where the underlying stochastic process to describe the software-fault detection phenomena was modeled by a non-homogeneous Poisson process. In this paper, we propose an interval estimation method for the wavelet-based approach, aiming at taking account of uncertainty which was left out of consideration in point estimation. More specifically, we employ the simulation-based bootstrap method, and derive the confidence intervals of software reliability measures such as the software intensity function and the expected cumulative number of software faults. To this end, we extend the well-known thinning algorithm for the purpose of generating multiple sample data from one set of software-fault count data. The results of numerical analysis with real software fault data make it clear that, our proposal is a decision support method which enables the practitioners to do flexible decision making in software development project management.

10041-10060hit(42807hit)