The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

10061-10080hit(42807hit)

  • An Investigation into the Characteristics of Merged Code Clones during Software Evolution

    Eunjong CHOI  Norihiro YOSHIDA  Katsuro INOUE  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:5
      Page(s):
    1244-1253

    Although code clones (i.e. code fragments that have similar or identical code fragments in the source code) are regarded as a factor that increases the complexity of software maintenance, tools for supporting clone refactoring (i.e. merging a set of code clones into a single method or function) are not commonly used. To promote the development of refactoring tools that can be more widely utilized, we present an investigation of clone refactoring carried out in the development of open source software systems. In the investigation, we identified the most frequently used refactoring patterns and discovered how merged code clone token sequences and differences in token sequence lengths vary for each refactoring pattern.

  • Study of Reducing Circuit Scale Associated with Bit Depth Expansion Using Predictive Gradation Detection Algorithm

    Akihiro NAGASE  Nami NAKANO  Masako ASAMURA  Jun SOMEYA  Gosuke OHASHI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E97-D No:5
      Page(s):
    1283-1292

    The authors have evaluated a method of expanding the bit depth of image signals called SGRAD, which requires fewer calculations, while degrading the sharpness of images less. Where noise is superimposed on image signals, the conventional method for obtaining high bit depth sometimes incorrectly detects the contours of images, making it unable to sufficiently correct the gradation. Requiring many line memories is also an issue with the conventional method when applying the process to vertical gradation. As a solution to this particular issue, SGRAD improves the method of detecting contours with transiting gradation to effectively correct the gradation of image signals which noise is superimposed on. In addition, the use of a prediction algorithm for detecting gradation reduces the scale of the circuit with less correction of the vertical gradation.

  • Image Quality Assessment Based on Multi-Order Visual Comparison

    Fei ZHOU  Wen SUN  Qingmin LIAO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:5
      Page(s):
    1379-1381

    A new scheme based on multi-order visual comparison is proposed for full-reference image quality assessment. Inspired by the observation that various image derivatives have great but different effects on visual perception, we perform respective comparison on different orders of image derivatives. To obtain an overall image quality score, we adaptively integrate the results of different comparisons via a perception-inspired strategy. Experimental results on public databases demonstrate that the proposed method is more competitive than some state-of-the-art methods, benchmarked against subjective assessment given by human beings.

  • Image Contrast Enhancement Using Adaptive Slope

    Hwa-Soo WOO  Jong-Wha CHONG  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:5
      Page(s):
    1382-1385

    In this paper, we propose an algorithm for contrast enhancement based on Adaptive Histogram Equalization (AHE) to improve image quality. Most histogram-based contrast enhancement methods have problems with excessive or low image contrast enhancement. This results in unnatural output images and the loss of visual information. The proposed method manipulates the slope of the input of the Probability Density Function (PDF) histogram. We also propose a pixel redistribution method using convolution to compensate for excess pixels after the slope modification procedure. Our method adaptively enhances the contrast of the input image and shows good simulation results compared with conventional methods.

  • Texture Direction Based Optimization for Intra Prediction in HEVC

    Zhengcong WANG  Peng WANG  Hongguang ZHANG  Hongjun ZHANG  Shibao ZHENG  Li SONG  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:5
      Page(s):
    1390-1393

    High Efficiency Video Coding (HEVC) is the latest video coding standard that is supported by JCT-VC. In this letter, an encoding algorithm for early termination of Coding Unit (CU) and Prediction Unit (PU) based on the texture direction is proposed for the HEVC intra prediction. Experimental results show that the proposed algorithm provides an average 40% total encoding time reduction with the negligible loss of rate-distortion.

  • Fast Density-Based Clustering Using Graphics Processing Units

    Woong-Kee LOH  Yang-Sae MOON  Young-Ho PARK  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:5
      Page(s):
    1349-1352

    Due to the recent technical advances, GPUs are used for general applications as well as screen display. Many research results have been proposed to the performance of previous CPU-based algorithms by a few hundred times using the GPUs. In this paper, we propose a density-based clustering algorithm called GSCAN, which reduces the number of unnecessary distance computations using a grid structure. As a result of our experiments, GSCAN outperformed CUDA-DClust [2] and DBSCAN [3] by up to 13.9 and 32.6 times, respectively.

  • Locating Fetal Facial Surface, Oral Cavity and Airways by a 3D Ultrasound Calibration Using a Novel Cones' Phantom

    Rong XU  Jun OHYA  Yoshinobu SATO  Bo ZHANG  Masakatsu G. FUJIE  

     
    PAPER-Biological Engineering

      Vol:
    E97-D No:5
      Page(s):
    1324-1335

    Toward the actualization of an automatic navigation system for fetoscopic tracheal occlusion (FETO) surgery, this paper proposes a 3D ultrasound (US) calibration-based approach that can locate the fetal facial surface, oral cavity, and airways by a registration between a 3D fetal model and 3D US images. The proposed approach consists of an offline process and online process. The offline process first reconstructs the 3D fetal model with the anatomies of the oral cavity and airways. Then, a point-based 3D US calibration system based on real-time 3D US images, an electromagnetic (EM) tracking device, and a novel cones' phantom, computes the matrix that transforms the 3D US image space into the world coordinate system. In the online process, by scanning the mother's body with a 3D US probe, 3D US images containing the fetus are obtained. The fetal facial surface extracted from the 3D US images is registered to the 3D fetal model using an ICP-based (iterative closest point) algorithm and the calibration matrices, so that the fetal facial surface as well as the oral cavity and airways are located. The results indicate that the 3D US calibration system achieves an FRE (fiducial registration error) of 1.49±0.44mm and a TRE (target registration error) of 1.81±0.56mm by using 24 fiducial points from two US volumes. A mean TRE of 1.55±0.46 mm is also achieved for measuring location accuracy of the 3D fetal facial surface extracted from 3D US images by 14 target markers, and mean location errors of 2.51±0.47 mm and 3.04±0.59 mm are achieved for indirectly measuring location accuracy of the pharynx and the entrance of the trachea, respectively, which satisfy the requirement of the FETO surgery.

  • Impact of Multiple Home Agents Placement in Mobile IPv6 Environment

    Oshani ERUNIKA  Kunitake KANEKO  Fumio TERAOKA  

     
    PAPER-Network

      Vol:
    E97-B No:5
      Page(s):
    967-980

    Mobile IPv6 is an IETF (Internet Engineering Task Force) standard which permits node mobility in IPv6. To manage mobility, it establishes a centralized mediator, Home Agent (HA), which inevitably introduces several penalties like triangular routing, single point of failure and limited scalability. Some later extensions such as Global HAHA, which employed multiple HAs, made to alleviate above shortcomings by introducing Distributed Mobility Management (DMM) approach. However, Multiple HA model will not be beneficial, unless the HAs are located finely. But, no major research paper has focused on locating HAs. This paper examines impact of single and multiple HA placements in data plane, by using an Autonomous System (AS) level topology consisting of 30,000 nodes with several evaluation criteria. All possible placements of HA(s) are analysed on a fair, random set of 30,000 node pairs of Mobile Nodes (MN) and Correspondent Nodes (CN). Ultimate result provides a concise account of different HA placements: i.e. cost centrality interprets performance variation better than degree centrality or betweenness. 30,000 ASs are classified into three groups in terms of Freeman's closeness index and betweenness centrality: 1) high range group, 2) mid range group, and 3) low range group. Considering dual HA placement, if one HA is placed in an AS in the high range group, then any subsequent HA placement gives worse results, thus single HA placement is adequate. With the mid range group, similar results are demonstrated by the upper portion of the group, but the rest yields better results when combined with another HA. Finally, from the perspective of low range group, if the subsequent HA is placed in the high range group, it gives better result. On the other hand, betweenness based grouping yields varying results. Consequently, this study reveals that the Freeman's closeness index is most appropriate in determining impacts of HA placements among considered indices.

  • Design and Implement of High Performance Crypto Coprocessor

    Shice NI  Yong DOU  Kai CHEN  Jie ZHOU  

     
    LETTER-Algorithms and Data Structures

      Vol:
    E97-A No:4
      Page(s):
    989-990

    This letter proposes a novel high performance crypto coprocessor that relies on Reconfigurable Cryptographic Blocks. We implement the prototype of the coprocessor on Xilinx FPGA chip. And the pipelining technique is adopted to realize data paralleling. The results show that the coprocessor, running at 189MHz, outperforms the software-based SSL protocol.

  • A Framework to Integrate Public Information into Runtime Safety Analysis for Critical Systems

    Guoqi LI  

     
    LETTER-Dependable Computing

      Vol:
    E97-D No:4
      Page(s):
    981-983

    The large and complicated safety-critical systems today need to keep changing to accommodate ever-changing objectives and environments. Accordingly, runtime analysis for safe reconfiguration or evaluation is currently a hot topic in the field, whereas information acquisition of external environment is crucial for runtime safety analysis. With the rapid development of web services, mobile networks and ubiquitous computing, abundant realtime information of environment is available on the Internet. To integrate these public information into runtime safety analysis of critical systems, this paper brings forward a framework, which could be implemented with open source and cross platform modules and encouragingly, applicable to various safety-critical systems.

  • Complexity Reduction in Joint Decoding of Block Coded Signals in Overloaded MIMO-OFDM System

    Yoshihito DOI  Mamiko INAMORI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    905-914

    This paper presents a low complexity joint decoding scheme of block coded signals in an overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. In previous literature, a joint maximum likelihood decoding scheme of block coded signals has been evaluated through theoretical analysis. The diversity gain with block coding prevents the performance degradation induced by signal multiplexing. However, the computational complexity of the joint decoding scheme increases exponentially with the number of multiplexed signal streams. Thus, this paper proposes a two step joint decoding scheme for block coded signals. The first step of the proposed scheme calculates metrics to reduce the number of the candidate codewords using decoding based on joint maximum likelihood symbol detection. The second step of the proposed scheme carries out joint decoding on the reduced candidate codewords. It is shown that the proposed scheme reduces the complexity by about 1/174 for 4 signal stream transmission.

  • Predicting Political Orientation of News Articles Based on User Behavior Analysis in Social Network Open Access

    Jun-Gil KIM  Kyung-Soon LEE  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    685-693

    News articles usually represent a biased viewpoint on contentious issues, potentially causing social problems. To mitigate this media bias, we propose a novel framework for predicting orientation of a news article by analyzing social user behaviors in Twitter. Highly active users tend to have consistent behavior patterns in social network by retweeting behavior among users with the same viewpoints for contentious issues. The bias ratio of highly active users is measured to predict orientation of users. Then political orientation of a news article is predicted based on the bias ratio of users, mutual retweeting and opinion analysis of tweet documents. The analysis of user behavior shows that users with the value of 1 in bias ratio are 88.82%. It indicates that most of users have distinctive orientation. Our prediction method based on orientation of users achieved 88.6% performance in accuracy. Experimental results show significant improvements over the SVM classification. These results show that proposed detection method is effective in social network.

  • Asynchronous Circuit Designs on an FPGA for Targeting a Power/Energy Efficient SoC

    Jeong-Gun LEE  Myeong-Hoon OH  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    253-263

    A modern system-on-chip (SoC) includes many heterogeneous IP components. Generally, a few embedded processors are integrated into SoCs. An asynchronous circuit design technique is employed to achieve low power/energy consumption. In this paper, we design an asynchronous embedded processor on FPGAs and analyze its possible benefits on commercial FPGAs. We use commercially available 65nm high-performance Virtex-5 and 45nm low-power Spartan-6 Xilinx FPGAs to show the impact on power consumption for the two different extreme cases. For the high performance Virtex-5, our asynchronous processor shows 36.8% lower power consumption when compared with its synchronous counterpart. On the other hand, the asynchronous processor consumes 25.6% more power in a low power Spartan-6 FPGA. However, through simple analysis and power simulation, we show that the event-driven nature of asynchronous circuits can further save power/energy even in the Spartan-6 FPGA.

  • Discovery of the Optimal Trust Inference Path for Online Social Networks Open Access

    Yao MA  Hongwei LU  Zaobin GAN  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    673-684

    Analysis of the trust network proves beneficial to the users in Online Social Networks (OSNs) for decision-making. Since the construction of trust propagation paths connecting unfamiliar users is the preceding work of trust inference, it is vital to find appropriate trust propagation paths. Most of existing trust network discovery algorithms apply the classical exhausted searching approaches with low efficiency and/or just take into account the factors relating to trust without regard to the role of distrust relationships. To solve the issues, we first analyze the trust discounting operators with structure balance theory and validate the distribution characteristics of balanced transitive triads. Then, Maximum Indirect Referral Belief Search (MIRBS) and Minimum Indirect Functional Uncertainty Search (MIFUS) strategies are proposed and followed by the Optimal Trust Inference Path Search (OTIPS) algorithms accordingly on the basis of the bidirectional versions of Dijkstra's algorithm. The comparative experiments of path search, trust inference and edge sign prediction are performed on the Epinions data set. The experimental results show that the proposed algorithm can find the trust inference path with better efficiency and the found paths have better applicability to trust inference.

  • Face Recognition via Curvelets and Local Ternary Pattern-Based Features

    Lijian ZHOU  Wanquan LIU  Zhe-Ming LU  Tingyuan NIE  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E97-D No:4
      Page(s):
    1004-1007

    In this Letter, a new face recognition approach based on curvelets and local ternary patterns (LTP) is proposed. First, we observe that the curvelet transform is a new anisotropic multi-resolution transform and can efficiently represent edge discontinuities in face images, and that the LTP operator is one of the best texture descriptors in terms of characterizing face image details. This motivated us to decompose the image using the curvelet transform, and extract the features in different frequency bands. As revealed by curvelet transform properties, the highest frequency band information represents the noisy information, so we directly drop it from feature selection. The lowest frequency band mainly contains coarse image information, and thus we deal with it more precisely to extract features as the face's details using LTP. The remaining frequency bands mainly represent edge information, and we normalize them for achieving explicit structure information. Then, all the extracted features are put together as the elementary feature set. With these features, we can reduce the features' dimension using PCA, and then use the sparse sensing technique for face recognition. Experiments on the Yale database, the extended Yale B database, and the CMU PIE database show the effectiveness of the proposed methods.

  • Time-Domain Windowing Design for IEEE 802.11af Based TVWS-WLAN Systems to Suppress Out-of-Band Emission

    Keiichi MIZUTANI  Zhou LAN  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    875-885

    This paper proposes out-of-band emission reduction schemes for IEEE 802.11af based Wireless Local Area Network (WLAN) systems operating in TV White Spaces (TVWS). IEEE 802.11af adopts Orthogonal Frequency Division Multiplexing (OFDM) to exploit the TVWS spectrum effectively. The combination of the OFDM and TVWS may be able to solve the problem of frequency depletion. However the TVWS transmitter must satisfy a strict transmission spectrum mask and reduce out-of-band emission to protect the primary users. The digital convolution filter is one way of reducing the out-of-band emission. Unfortunately, implementing a strict mask needs a large number of filter taps, which causes high implementation complexity. Time-domain windowing is another effective approach. This scheme reduces out-of-band emission with low complexity but at the price of shortening the effective guard interval. This paper proposes a mechanism that jointly uses these two schemes for out-of-band emission reduction. Moreover, the appropriate windowing duration design is proposed in terms of both the out-of-band emission suppression and throughput performance for all mandatory mode of IEEE 802.11af system. The proposed time-domain windowing design reduces the number of multiplier by 96.5%.

  • Solving the Phoneme Conflict in Grapheme-to-Phoneme Conversion Using a Two-Stage Neural Network-Based Approach

    Seng KHEANG  Kouichi KATSURADA  Yurie IRIBE  Tsuneo NITTA  

     
    PAPER-Speech and Hearing

      Vol:
    E97-D No:4
      Page(s):
    901-910

    To achieve high quality output speech synthesis systems, data-driven grapheme-to-phoneme (G2P) conversion is usually used to generate the phonetic transcription of out-of-vocabulary (OOV) words. To improve the performance of G2P conversion, this paper deals with the problem of conflicting phonemes, where an input grapheme can, in the same context, produce many possible output phonemes at the same time. To this end, we propose a two-stage neural network-based approach that converts the input text to phoneme sequences in the first stage and then predicts each output phoneme in the second stage using the phonemic information obtained. The first-stage neural network is fundamentally implemented as a many-to-many mapping model for automatic conversion of word to phoneme sequences, while the second stage uses a combination of the obtained phoneme sequences to predict the output phoneme corresponding to each input grapheme in a given word. We evaluate the performance of this approach using the American English words-based pronunciation dictionary known as the auto-aligned CMUDict corpus[1]. In terms of phoneme and word accuracy of the OOV words, on comparison with several proposed baseline approaches, the evaluation results show that our proposed approach improves on the previous one-stage neural network-based approach for G2P conversion. The results of comparison with another existing approach indicate that it provides higher phoneme accuracy but lower word accuracy on a general dataset, and slightly higher phoneme and word accuracy on a selection of words consisting of more than one phoneme conflicts.

  • IEEE 802.11af TVWS-WLAN with Partial Subcarrier System for Effective TVWS Utilization

    Keiichi MIZUTANI  Zhou LAN  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:4
      Page(s):
    886-895

    Demand for wireless communication is increasing significantly, but the frequency resources available for wireless communication are quite limited. Currently, various countries are prompting the use of TV white spaces (TVWS). IEEE 802.11 Working Group (WG) has started a Task Group (TG), namely IEEE 802.11af, to develop an international standard for Wireless local Area Networks (WLANs) in TVWS. In order to increase maximum throughput, a channel aggregation mechanism is introduced in the draft standard. In Japan, ISDB-T based area-one-segment broadcasting system (Area-1seg) which is a digital TV broadcast service in limited areas has been permitted to offer actual TVWS services since April 2012. The operation of the IEEE 802.11af system shall not jeopardize the Area-1seg system due to the common operating frequency band. If the Area-1seg partially overlaps with the IEEE 802.11af in some frequency, the IEEE 802.11af cannot use the channel aggregation mechanism due to a lack of channels. As a result, the throughput of the IEEE 802.11af deteriorates. In this paper, the physical layer of IEEE 802.11af D4.0 is introduced briefly, and a partial subcarrier system for IEEE 802.11af is proposed to efficiently use the TVWS spectrum. The IEEE 802.11af co-exist with the Area-1seg by using null subcarriers. Computer simulation shows up to around 70% throughput gain is achieved with the proposed mechanism.

  • An Automated Segmentation Algorithm for CT Volumes of Livers with Atypical Shapes and Large Pathological Lesions

    Shun UMETSU  Akinobu SHIMIZU  Hidefumi WATANABE  Hidefumi KOBATAKE  Shigeru NAWANO  

     
    PAPER-Biological Engineering

      Vol:
    E97-D No:4
      Page(s):
    951-963

    This paper presents a novel liver segmentation algorithm that achieves higher performance than conventional algorithms in the segmentation of cases with unusual liver shapes and/or large liver lesions. An L1 norm was introduced to the mean squared difference to find the most relevant cases with an input case from a training dataset. A patient-specific probabilistic atlas was generated from the retrieved cases to compensate for livers with unusual shapes, which accounts for liver shape more specifically than a conventional probabilistic atlas that is averaged over a number of training cases. To make the above process robust against large pathological lesions, we incorporated a novel term based on a set of “lesion bases” proposed in this study that account for the differences from normal liver parenchyma. Subsequently, the patient-specific probabilistic atlas was forwarded to a graph-cuts-based fine segmentation step, in which a penalty function was computed from the probabilistic atlas. A leave-one-out test using clinical abdominal CT volumes was conducted to validate the performance, and proved that the proposed segmentation algorithm with the proposed patient-specific atlas reinforced by the lesion bases outperformed the conventional algorithm with a statistically significant difference.

  • Experimental Implementation of Non-binary Cyclic ADCs with Radix Value Estimation Algorithm

    Rompei SUGAWARA  Hao SAN  Kazuyuki AIHARA  Masao HOTTA  

     
    PAPER

      Vol:
    E97-C No:4
      Page(s):
    308-315

    Proof-of-concept cyclic analog-to-digital converters (ADCs) have been designed and fabricated in 90-nm CMOS technology. The measurement results of an experimental prototype demonstrate the effectiveness of the proposed switched-capacitor (SC) architecture to realize a non-binary ADC based on β expansion. Different from the conventional binary ADC, a simple 1-bit/step structure for an SC multiplying digital-to-analog converter (MDAC) is proposed to present residue amplification by β (1 < β < 2). The redundancy of non-binary ADCs with radix β tolerates the non-linear conversion errors caused by the offsets of comparators, the mismatches of capacitors, and the finite DC gains of amplifiers, which are used in the MDAC. We also employed a radix value estimation algorithm to obtain an effective value of β for non-binary encoding; it can be realized by merely adding a simple conversion sequence and digital circuits. As a result, the power penalty of a high-gain wideband amplifier and the required accuracy of the circuit elements for a high-resolution ADC were largely relaxed so that the circuit design was greatly simplified. The implemented ADC achieves a measured peak signal-to-noise-and-distortion-ratio (SNDR) of 60.44dB, even with an op-amp with a poor DC gain (< 50dB) while dissipating 780µW in analog circuits at 1.4V and occupying an active area of 0.25 × 0.26mm2.

10061-10080hit(42807hit)