The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

4701-4720hit(18690hit)

  • DOA Estimation for Multi-Band Signal Sources Using Compressed Sensing Techniques with Khatri-Rao Processing

    Tsubasa TERADA  Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  Hiroyoshi YAMADA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2110-2117

    Much attention has recently been paid to direction of arrival (DOA) estimation using compressed sensing (CS) techniques, which are sparse signal reconstruction methods. In our previous study, we developed a method for estimating the DOAs of multi-band signals that uses CS processing and that is based on the assumption that incident signals have the same complex amplitudes in all the bands. That method has a higher probability of correct estimation than a single-band DOA estimation method using CS. In this paper, we propose novel DOA estimation methods for multi-band signals with frequency characteristics using the Khatri-Rao product. First, we formulate a method that can estimate DOAs of multi-band signals whose phases alone have frequency dependence. Second, we extend the scheme in such a way that we can estimate DOAs of multi-band signals whose amplitudes and phases both depend on frequency. Finally, we evaluate the performance of the proposed methods through computer simulations and reveal the improvement in estimation performance.

  • Radiation Properties of a Linearly Polarized Radial Line Microstrip Antenna Array with U-Slots

    Yuki KIMURA  Sakuyoshi SAITO  Yuichi KIMURA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2059-2065

    This paper presents the design and radiation properties of a linearly polarized radial line microstrip antenna array (RL-MSAA) with U-slot circular microstrip antennas. A circular microstrip antenna (C-MSA) with U-shaped slot is used as a radiation element of the RL-MSAA. Radiation phase of the U-slot C-MSA is controlled by tuning the radius of the C-MSA and dimensions of the U-slot on the C-MSA; therefore, the desired phase distribution of the RL-MSAA can be realized. In this paper, a linearly polarized RL-MSAA with three concentric rows of C-MSAs at a spacing of 0.65 wavelengths is designed for 12GHz operation. In order to realize uniform phase distribution, the U-slot C-MSAs are arranged for inner two rows and normal C-MSAs are arranged for the termination row. Validity of the linearly polarized RL-MSAA with the U-slot C-MSAs for radiation phase control is demonstrated by simulation and measurement.

  • The Numerical Analysis of an Antenna near a Dielectric Object Using the Higher-Order Characteristic Basis Function Method Combined with a Volume Integral Equation

    Keisuke KONNO  Qiang CHEN  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2066-2073

    The higher-order characteristic basis function method (HO-CBFM) is clearly formulated. HO-CBFM provides results accurately even if a block division is arbitrary. The HO-CBFM combined with a volume integral equation (VIE) is used in the analysis of various antennas in the vicinity of a dielectric object. The results of the numerical analysis show that the HO-CBFM can reduce the CPU time while still achieving the desired accuracy.

  • An Online Framework for Flow Round Trip Time Measurement

    Xinjie GUAN  Xili WAN  Ryoichi KAWAHARA  Hiroshi SAITO  

     
    PAPER-Network

      Vol:
    E97-B No:10
      Page(s):
    2145-2156

    With the advent of high speed links, online flow measurement for, e.g., flow round trip time (RTT), has become difficult due to the enormous demands placed on computational resources. Most existing measurement methods are designed to count the numbers of flows or sizes of flows, but we address the flow RTT measurement, which is an important QoS metric for network management and cannot be measured with existing measurement methods. We first adapt a standard Bloom Filter (BF) for the flow RTT distribution estimation. However, due to the existence of multipath routing and Syn flooding attacks, the standard BF does not perform well. We further design the double-deletion bloom filter (DDBF) scheme, which alleviates potential hash collisions of the standard BF by explicitly deleting used records and implicitly deleting out-of-date records. Because of these double deletion operations, the DDBF accurately estimates the RTT distribution of TCP flows with limited memory space, even with the appearance of multipath routing and Syn flooding attacks. Theoretical analysis indicates that the DDBF scheme achieves a higher accuracy with a constant and smaller amount of memory compared with the standard BF. In addition, we validate our scheme using real traces and demonstrate significant memory-savings without degrading accuracy.

  • A Two-Stage Dynamic Channel Assignment Scheme with Graph Approach for Dense Femtocell Networks

    Se-Jin KIM  IlKwon CHO  Yi-Kang KIM  Choong-Ho CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2222-2229

    In dense femtocell networks (DFNs), one of the main issues is interference management since interference between femtocell access points (FAPs) reduces the system performance significantly. Further, FAPs serve different numbers of femtocell user equipments (FUEs), i.e., some FAPs have more than one FUE while others have one or no FUEs. Therefore, for DFNs, an intelligent channel assignment scheme is necessary considering both the number of FUEs connected to the same FAPs and interference mitigation to improve system performance. This paper proposes a two-stage dynamic channel assignment (TS-DCA) scheme for downlink DFNs based on orthogonal frequency division multiple access/frequency division duplex (OFDMA/FDD). In stage 1, using graph coloring algorithm, a femtocell gateway (FGW) first groups FUEs based on an interference graph that considers different numbers of FUEs per FAP. Then, in stage 2, the FGW dynamically assigns subchannels to FUE clusters according to the order of maximum capacity of FAP clusters. In addition, FAPs adaptively assign remaining subchannels in FUE clusters to their FUEs in other FUE clusters. Through simulations, we first find optimum parameters of the FUE clustering to maximize the system capacity and then evaluate system performance in terms of the mean FUE capacity, unsatisfied FUE probability, and mean FAP transmission energy consumption according to the different numbers of FUEs and FAPs with a given FUE traffic load.

  • Improving Hough Based Pedestrian Detection Accuracy by Using Segmentation and Pose Subspaces

    Jarich VANSTEENBERGE  Masayuki MUKUNOKI  Michihiko MINOH  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E97-D No:10
      Page(s):
    2760-2768

    The Hough voting framework is a popular approach to parts based pedestrian detection. It works by allowing image features to vote for the positions and scales of pedestrians within a test image. Each vote is cast independently from other votes, which allows for strong occlusion robustness. However this approach can produce false pedestrian detections by accumulating votes inconsistent with each other, especially in cluttered scenes such as typical street scenes. This work aims to reduce the sensibility to clutter in the Hough voting framework. Our idea is to use object segmentation and object pose parameters to enforce votes' consistency both at training and testing time. Specifically, we use segmentation and pose parameters to guide the learning of a pedestrian model able to cast mutually consistent votes. At test time, each candidate detection's support votes are looked upon from a segmentation and pose viewpoints to measure their level of agreement. We show that this measure provides an efficient way to discriminate between true and false detections. We tested our method on four challenging pedestrian datasets. Our method shows clear improvements over the original Hough based detectors and performs on par with recent enhanced Hough based detectors. In addition, our method can perform segmentation and pose estimation as byproducts of the detection process.

  • Unsupervised Dimension Reduction via Least-Squares Quadratic Mutual Information

    Janya SAINUI  Masashi SUGIYAMA  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2014/07/22
      Vol:
    E97-D No:10
      Page(s):
    2806-2809

    The goal of dimension reduction is to represent high-dimensional data in a lower-dimensional subspace, while intrinsic properties of the original data are kept as much as possible. An important challenge in unsupervised dimension reduction is the choice of tuning parameters, because no supervised information is available and thus parameter selection tends to be subjective and heuristic. In this paper, we propose an information-theoretic approach to unsupervised dimension reduction that allows objective tuning parameter selection. We employ quadratic mutual information (QMI) as our information measure, which is known to be less sensitive to outliers than ordinary mutual information, and QMI is estimated analytically by a least-squares method in a computationally efficient way. Then, we provide an eigenvector-based efficient implementation for performing unsupervised dimension reduction based on the QMI estimator. The usefulness of the proposed method is demonstrated through experiments.

  • Specific Absorption Rates and Temperature Elevations due to Wireless Radio Terminals in Proximity to a Fetus at Gestational Ages of 13, 18, and 26 Weeks

    Akihiro TATENO  Shimpei AKIMOTO  Tomoaki NAGAOKA  Kazuyuki SAITO  Soichi WATANABE  Masaharu TAKAHASHI  Koichi ITO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:10
      Page(s):
    2175-2183

    As the electromagnetic (EM) environment is becoming increasingly diverse, it is essential to estimate specific absorption rates (SARs) and temperature elevations of pregnant females and their fetuses under various exposure situations. This study presents calculated SARs and temperature elevations in a fetus exposed to EM waves. The calculations involved numerical models for the anatomical structures of a pregnant Japanese woman at gestational stages of 13, 18, and 26 weeks; the EM source was a wireless portable terminal placed close to the abdomen of the pregnant female model. The results indicate that fetal SARs and temperature elevations are closely related to the position of the fetus relative to the EM source. We also found that, although the fetal SAR caused by a half-wavelength dipole antenna is sometimes comparable to or slightly more than the International Commission Non-Ionizing Radiation Protection guidelines, it is lower than the guideline level in more realistic situations, such as when a planar inverted-F antenna is used. Furthermore, temperature elevations were significantly below the threshold set to prevent the child from being born with developmental disabilities.

  • Quantification and Verification of Whole-Body-Average SARs in Small Animals Exposed to Electromagnetic Fields inside Reverberation Chamber

    Jingjing SHI  Jerdvisanop CHAKAROTHAI  Jianqing WANG  Kanako WAKE  Soichi WATANABE  Osamu FUJIWARA  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E97-B No:10
      Page(s):
    2184-2191

    This paper aims to achieve a high-quality exposure level quantification of whole-body average-specific absorption rates (WBA-SARs) for small animals in a medium-size reverberation chamber (RC). A two-step method, which incorporates the finite-difference time-domain (FDTD) numerical solutions with electric field measurements in an RC-type exposure system, has been used as an evaluation method to determine the whole-body exposure level in small animals. However, there is little data that quantitatively demonstrate the validity and accuracy of this method in an RC up to now. In order to clarify the validity of the two-step method, we compare the physical quantities in terms of electric field strength and WBA-SARs by using a direct numerical assessment method known as the method of moments (MoM) with ten homogenous gel phantoms placed in an RC with 2GHz exposure. The comparison results show that the relative errors between the two-step method and the MoM approach are approximately below 10%, which reveals the validity and usefulness of the two-step technique. Finally, we perform a dosimetric analysis of the WBA-SARs for anatomical mouse models with the two-step method and determine the input power related to our developed RC-exposure system to achieve a target exposure level in small animals.

  • DRDet: Efficiently Making Data Races Deterministic

    Chen CHEN  Kai LU  Xiaoping WANG  Xu ZHOU  Zhendong WU  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:10
      Page(s):
    2676-2684

    Strongly deterministic multithreading provides determinism for multithreaded programs even in the presence of data races. A common way to guarantee determinism for data races is to isolate threads by buffering shared memory accesses. Unfortunately, buffering all shared accesses is prohibitively costly. We propose an approach called DRDet to efficiently make data races deterministic. DRDet leverages the insight that, instead of buffering all shared memory accesses, it is sufficient to only buffer memory accesses involving data races. DRDet uses a sound data-race detector to detect all potential data races. These potential data races, along with all accesses which may access the same set of memory objects, are flagged as data-race-involved accesses. Unsurprisingly, the imprecision of static analyses makes a large fraction of shared accesses to be data-race-involved. DRDet employs two optimizations which aim at reducing the number of accesses to be sent to query alias analysis. We implement DRDet on CoreDet, a state-of-the-art deterministic multithreading system. Our empirical evaluation shows that DRDet reduces the overhead of CoreDet by an average of 1.6X, without weakening determinism and scalability.

  • Discriminative Reference-Based Scene Image Categorization

    Qun LI  Ding XU  Le AN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2014/07/22
      Vol:
    E97-D No:10
      Page(s):
    2823-2826

    A discriminative reference-based method for scene image categorization is presented in this letter. Reference-based image classification approach combined with K-SVD is approved to be a simple, efficient, and effective method for scene image categorization. It learns a subspace as a means of randomly selecting a reference-set and uses it to represent images. A good reference-set should be both representative and discriminative. More specifically, the reference-set subspace should well span the data space while maintaining low redundancy. To automatically select reference images, we adapt affinity propagation algorithm based on data similarity to gather a reference-set that is both representative and discriminative. We apply the discriminative reference-based method to the task of scene categorization on some benchmark datasets. Extensive experiment results demonstrate that the proposed scene categorization method with selected reference set achieves better performance and higher efficiency compared to the state-of-the-art methods.

  • On the Robustness of Hurwitz Polynomials under Coefficient Perturbation

    Younseok CHOO  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:10
      Page(s):
    2079-2082

    This note presents a new approach for the robustness of Hurwitz polynomials under coefficient perturbation. The s-domain Hurwitz polynomial is transformed to the z-domain polynomial by the bilinear transformation. Then an approach based on the Rouché theorem introduced in the literature is applied to compute a crude bound for the allowable coefficient variation such that the perturbed polynomial maintains the Hurwitz stability property. Three methods to obtain improved bounds are also suggested. The results of this note are computationally more efficient than the existing direct s-domain approaches especially for polynomials of higher degree. Furthermore examples indicate that the exact bound for the coefficient variation can be obtained in some cases.

  • Binaural Sound Source Localization in Noisy Reverberant Environments Based on Equalization-Cancellation Theory

    Thanh-Duc CHAU  Junfeng LI  Masato AKAGI  

     
    PAPER-Engineering Acoustics

      Vol:
    E97-A No:10
      Page(s):
    2011-2020

    Sound source localization (SSL), with a binaural input in practical environments, is a challenging task due to the effects of noise and reverberation. In psychoacoustic research field, one of the theories to explain the mechanism of human perception in such environments is the well-known equalization-cancellation (EC) model. Motivated by the EC theory, this paper investigates a binaural SSL method by integrating EC procedures into a beamforming technique. The principle idea is that the EC procedures are first utilized to eliminate the sound signal component at each candidate direction respectively; direction of sound source is then determined as the direction at which the residual energy is minimal. The EC procedures applied in the proposed method differ from those in traditional EC models, in which the interference signals in rooms are accounted in E and C operations based on limited prior known information. Experimental results demonstrate that our proposed method outperforms the traditional SSL algorithms in the presence of noise and reverberation simultaneously.

  • Complexity-Reduced Low Noise Matching Design of Receiver Front-end Amplifiers with Mutually Coupled 2×2 MIMO Antennas

    Jaeho JEONG  Gia Khanh TRAN  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    1005-1013

    This paper addresses a noise matching problem for MIMO receiver with mutual coupling in the presence of signal and antenna noise coupling. The matching network in this paper is designed to maximize the system's ergodic capacity by means of minimizing the noise figure matrix. For reducing RF circuit complexity, low noise matching design without crossover elements of the matching circuit is derived for compact symmetrical 2$ imes$2 MIMO receiver system with mutually coupled antenna. Numerical simulation verifies our analytical results and demonstrates the superiority of the proposed matching method among feasible ones. The paper furthermore investigates the lossy matching circuit with the corresponding circuit parameters in a specific condition and the effect of practical matching circuit.

  • A Zero Phase Noise Reduction Method with Damped Oscillation Estimator

    Sayuri KOHMURA  Arata KAWAMURA  Youji IIGUNI  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:10
      Page(s):
    2033-2042

    This paper proposes a noise reduction method for impact noise with damped oscillation caused by clinking a glass, hitting a bottle, and so on. The proposed method is based on the zero phase (ZP) signal defined as the IDFT of the spectral amplitude. When the target noise can be modeled as the sum of the impact part and the damped oscillation part, the proposed method can reduce them individually. First, the proposed method estimates the damped oscillation spectra and subtracts them from the observed spectra. Then, the impact part is reduced by replacing several samples of the ZP observed signal. Simulation results show that the proposed method improved 10dB of SNR of real impact noise.

  • Workload-Aware Caching Policy for Information-Centric Networking

    Qian HU  Muqing WU  Song GUO  Hailong HAN  Chaoyi ZHANG  

     
    PAPER-Network

      Vol:
    E97-B No:10
      Page(s):
    2157-2166

    Information-centric networking (ICN) is a promising architecture and has attracted much attention in the area of future Internet architectures. As one of the key technologies in ICN, in-network caching can enhance content retrieval at a global scale without requiring any special infrastructure. In this paper, we propose a workload-aware caching policy, LRU-GT, which allows cache nodes to protect newly cached contents for a period of time (guard time) during which contents are protected from being replaced. LRU-GT can utilize the temporal locality and distinguish contents of different popularity, which are both the characteristics of the workload. Cache replacement is modeled as a semi-Markov process under the Independent Reference Model (IRM) assumption and a theoretical analysis proves that popular contents have longer sojourn time in the cache compared with unpopular ones in LRU-GT and the value of guard time can affect the cache hit ratio. We also propose a dynamic guard time adjustment algorithm to optimize the performance. Simulation results show that LRU-GT can reduce the average hops to get contents and improve cache hit ratio.

  • Field Experimental Evaluation of Null Control Performance of MU-MIMO Considering Smart Vertical MIMO in LTE-Advanced Downlink under LOS Dominant Conditions

    Yuki INOUE  Daiki TAKEDA  Keisuke SAITO  Teruo KAWAMURA  Hidehiro ANDOH  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2136-2144

    The performance in terms of the user separation of multi-user multiple-input multiple-output (MU-MIMO) depends on not only the spatial correlation but also the location of the mobile stations (MSs). In order to take into account the performance in terms of the user separation, we need to consider the granularity of the beam and null width of the precoded antenna pattern in addition to the spatial correlation to determine the base station (BS) antenna configuration. In this paper, we propose Smart Vertical MIMO (SV-MIMO) as the best antenna configuration that achieves both spatial correlation and granularity of the beam and null width of the precoded antenna pattern. We evaluate SV-MIMO in a field experiment using a downlink 4-by-2 MU-MIMO configuration focusing on the dependency of the location of the MSs in Yokosuka, Japan. The majority of the measurement course is under line-of-sight (LOS) conditions in a single cell environment. The MSs are almost uniformly set 30 to 60 degrees in azimuth and 12 to 30 degrees in elevation and the distance from the BS antennas is approximately 150m at maximum. We also evaluate the performance of 4-by-2 MU-MIMO using the conventional type of horizontal array antenna and show the difference. The field experimental results show that throughput of greater than 1Gbps is achieved at the Cumulative Distribution Function (CDF) of 14% by employing SV-MIMO for Rank-4 MU-MIMO. The throughput of SV-MIMO is 30% higher than that for the horizontal array antenna configuration at the CDF of 50%.

  • Transmission Rate by User Antenna Selection for Block Diagonalization Based Multiuser MIMO System

    Kentaro NISHIMORI  Takefumi HIRAGURI  Hideo MAKINO  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2118-2126

    Multi-user MIMO (MU-MIMO) improves the system channel capacity by employing the transmission between a base station and multiple user terminals (UTs). Block Diagonalization (BD) has been proposed in order to realize MU-MIMO broadcast transmission. The BD algorithm cancels inter-user interference by creating the weights so that the channel matrixes for the other users are set to be zero matrixes. However, when the number of transmit antennas is equals to the total number of received antennas, the transmission rate by the BD algorithm is decreased. This paper proposes a new antenna selection method at the UTs to reduce the number of nulls for the other users except an intended user by the BD algorithm. It is verified via bit error rate (BER) evaluation that the proposed method is effective compared to the conventional BD algorithm, especially, when the number of users is increased with a low bit rate. Moreover, this paper evaluates the transmission rate based on IEEE802.11ac standard when considering BD algorithm with ideal user scheduling. Although the number of equivalent receive antenna is only one by the proposed method when the number of antennas at the the UT is two, it is shown that the transmission rate by the proposed method is higher than that by the conventional BD algorithm when the SNR is low even in the condition on user scheduling.

  • Channel Estimation Method Using Arbitrary Amplitude and Phase Modulation Schemes for MIMO Sensor

    Tsubasa TASHIRO  Kentaro NISHIMORI  Tsutomu MITSUI  Nobuyasu TAKEMURA  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2102-2109

    We have proposed an intruder detection method by using multiple-input multiple-output (MIMO) channels. Although the channel capacity for MIMO transmission is severely degraded in time-variant channels, we can take advantage of this feature in MIMO sensor applications. For MIMO sensors, the accurate estimation of channel state information (CSI) is essential. Moreover, the transceiver should be simplified from the viewpoint of saving power. Narrowband signals such as minimum shift keying (MSK) and offset quaternary phase shift keying signals are effective and are used in sensor network systems. However, because the timing and carrier offsets between the transmitter and receiver are relatively large compared to the symbol rate, accurate CSI estimation is impossible given the severe constraints imposed by the timing and carrier offsets. To solve this issue, a signal synchronization method for the CSI estimation using a narrowband MSK signal has been proposed. In this paper, we propose a new CSI estimation method for arbitrary amplitude and phase modulation schemes for the MIMO sensor. The key point of the proposed method is that control signals (unique words) are mapped so as not to pass through the origin of the complex I/Q plane. The estimation accuracy of the proposed method is evaluated via a computer simulation. Moreover, the basic performance by the proposed CSI estimation method is verified when considering intruder detection by MIMO sensor.

  • S-Parameter Method and Its Application for Antenna Measurements Open Access

    Takayuki SASAMORI  Toru FUKASAWA  

     
    INVITED PAPER

      Vol:
    E97-B No:10
      Page(s):
    2011-2021

    This paper focuses on the S-parameter method that is a basic method for measuring the input impedance of balanced-fed antennas. The basic concept of the method is summarized using the two-port network, and it is shown that the method can be enhanced to the unbalanced antennas using a formulation based on incident and reflected waves. The compensation method that eliminates the influence of a measurement jig and the application of the S-parameter method for the measurement of a radiation pattern with reduced unbalanced currents are explained. Further, application of the method for measuring the reflection and coupling coefficients of multiple antennas is introduced. The measured results of the input impedance of a dipole antenna, radiation patterns of a helical antenna on a small housing, and S-parameters of multiple antennas on a small housing are examined, and the measured results obtained with the S-parameter method are verified.

4701-4720hit(18690hit)