The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

4721-4740hit(18690hit)

  • Field Experimental Evaluation of Null Control Performance of MU-MIMO Considering Smart Vertical MIMO in LTE-Advanced Downlink under LOS Dominant Conditions

    Yuki INOUE  Daiki TAKEDA  Keisuke SAITO  Teruo KAWAMURA  Hidehiro ANDOH  

     
    PAPER

      Vol:
    E97-B No:10
      Page(s):
    2136-2144

    The performance in terms of the user separation of multi-user multiple-input multiple-output (MU-MIMO) depends on not only the spatial correlation but also the location of the mobile stations (MSs). In order to take into account the performance in terms of the user separation, we need to consider the granularity of the beam and null width of the precoded antenna pattern in addition to the spatial correlation to determine the base station (BS) antenna configuration. In this paper, we propose Smart Vertical MIMO (SV-MIMO) as the best antenna configuration that achieves both spatial correlation and granularity of the beam and null width of the precoded antenna pattern. We evaluate SV-MIMO in a field experiment using a downlink 4-by-2 MU-MIMO configuration focusing on the dependency of the location of the MSs in Yokosuka, Japan. The majority of the measurement course is under line-of-sight (LOS) conditions in a single cell environment. The MSs are almost uniformly set 30 to 60 degrees in azimuth and 12 to 30 degrees in elevation and the distance from the BS antennas is approximately 150m at maximum. We also evaluate the performance of 4-by-2 MU-MIMO using the conventional type of horizontal array antenna and show the difference. The field experimental results show that throughput of greater than 1Gbps is achieved at the Cumulative Distribution Function (CDF) of 14% by employing SV-MIMO for Rank-4 MU-MIMO. The throughput of SV-MIMO is 30% higher than that for the horizontal array antenna configuration at the CDF of 50%.

  • S-Parameter Method and Its Application for Antenna Measurements Open Access

    Takayuki SASAMORI  Toru FUKASAWA  

     
    INVITED PAPER

      Vol:
    E97-B No:10
      Page(s):
    2011-2021

    This paper focuses on the S-parameter method that is a basic method for measuring the input impedance of balanced-fed antennas. The basic concept of the method is summarized using the two-port network, and it is shown that the method can be enhanced to the unbalanced antennas using a formulation based on incident and reflected waves. The compensation method that eliminates the influence of a measurement jig and the application of the S-parameter method for the measurement of a radiation pattern with reduced unbalanced currents are explained. Further, application of the method for measuring the reflection and coupling coefficients of multiple antennas is introduced. The measured results of the input impedance of a dipole antenna, radiation patterns of a helical antenna on a small housing, and S-parameters of multiple antennas on a small housing are examined, and the measured results obtained with the S-parameter method are verified.

  • Subcarrier Allocation for the Recovery of a Faulty Cell in an OFDM-Based Wireless System

    Changho YIM  Unil YUN  Eunchul YOON  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2243-2250

    An efficient subcarrier allocation scheme of a supporting cell is proposed to recover the communication of faulty cell users in an OFDM-based wireless system. With the proposed subcarrier allocation scheme, the number of subcarriers allocated to faulty cell users is maximized while the average throughput of supporting cell users is maintained at a desired level. To find the maximum number of subcarriers allocated to faulty cell users, the average throughput of the subcarrier with the k-th smallest channel gain in a subcarrier group is derived by an inductive method. It is shown by simulation that the proposed subcarrier allocation scheme can provide more subcarriers to faulty cell users than the random selection subcarrier allocation scheme.

  • Pilot-Plant Scale 12 kW Microwave Irradiation Reactor for Woody Biomass Pretreatment

    Naoki HASEGAWA  Tomohiko MITANI  Naoki SHINOHARA  Masakazu DAIDAI  Yoko KATSURA  Hisayuki SEGO  Takashi WATANABE  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    986-993

    A simple, low reflection, and highly-efficient pilot-plant scale microwave irradiation reactor for woody biomass pretreatment was fabricated. Pretreatment is an essential process for effective bioethanol production. The fabricated reactor consists of 8 microwave irradiators which are attached to a metal pipe. The woody biomass mixture which contains water and organic acid flows through the metal pipe and is heated by microwaves at a total power of 12,kW. To design the microwave irradiators, we used a 3D Finite Element Method (FEM) simulator, which was based on the measured complex permittivity data of the woody biomass mixture. The simulation results showed that the reflection coefficient $|S_{11}|$ from the reactor was less than -30,dB when the woody biomass mixture temperature was between 30$^{circ}$C and 90$^{circ}$C. Finally, we experimentally confirmed that the fabricated irradiation reactor yielded a microwave absorption efficiency of 79%.

  • Complexity-Reduced Low Noise Matching Design of Receiver Front-end Amplifiers with Mutually Coupled 2×2 MIMO Antennas

    Jaeho JEONG  Gia Khanh TRAN  Kiyomichi ARAKI  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    1005-1013

    This paper addresses a noise matching problem for MIMO receiver with mutual coupling in the presence of signal and antenna noise coupling. The matching network in this paper is designed to maximize the system's ergodic capacity by means of minimizing the noise figure matrix. For reducing RF circuit complexity, low noise matching design without crossover elements of the matching circuit is derived for compact symmetrical 2$ imes$2 MIMO receiver system with mutually coupled antenna. Numerical simulation verifies our analytical results and demonstrates the superiority of the proposed matching method among feasible ones. The paper furthermore investigates the lossy matching circuit with the corresponding circuit parameters in a specific condition and the effect of practical matching circuit.

  • On the Robustness of Hurwitz Polynomials under Coefficient Perturbation

    Younseok CHOO  

     
    LETTER-Systems and Control

      Vol:
    E97-A No:10
      Page(s):
    2079-2082

    This note presents a new approach for the robustness of Hurwitz polynomials under coefficient perturbation. The s-domain Hurwitz polynomial is transformed to the z-domain polynomial by the bilinear transformation. Then an approach based on the Rouché theorem introduced in the literature is applied to compute a crude bound for the allowable coefficient variation such that the perturbed polynomial maintains the Hurwitz stability property. Three methods to obtain improved bounds are also suggested. The results of this note are computationally more efficient than the existing direct s-domain approaches especially for polynomials of higher degree. Furthermore examples indicate that the exact bound for the coefficient variation can be obtained in some cases.

  • A Performance Fluctuation-Aware Stochastic Scheduling Mechanism for Workflow Applications in Cloud Environment

    Fang DONG  Junzhou LUO  Bo LIU  

     
    PAPER

      Vol:
    E97-D No:10
      Page(s):
    2641-2651

    Cloud computing, a novel distributed paradigm to provide powerful computing capabilities, is usually adopted by developers and researchers to execute complicated IoT applications such as complex workflows. In this scenario, it is fundamentally important to make an effective and efficient workflow application scheduling and execution by fully utilizing the advantages of the cloud (as virtualization and elastic services). However, in the current stage, there is relatively few research for workflow scheduling in cloud environment, where they usually just bring the traditional methods directly into cloud. Without considering the features of cloud, it may raise two kinds of problems: (1) The traditional methods mainly focus on static resource provision, which will cause the waste of resources; (2) They usually ignore the performance fluctuation of virtual machines on the physical machines, therefore it will lead to the estimation error of task execution time. To address these problems, a novel mechanism which can estimate the probability distribution of subtask execution time based on background VM load series over physical machines is proposed. An elastic performance fluctuations-aware stochastic scheduling algorithm is introduced in this paper. The experiments show that our proposed algorithm can outperform the existing algorithms in several metrics and can relieve the influence of performance fluctuations brought by the dynamic nature of cloud.

  • Binaural Sound Source Localization in Noisy Reverberant Environments Based on Equalization-Cancellation Theory

    Thanh-Duc CHAU  Junfeng LI  Masato AKAGI  

     
    PAPER-Engineering Acoustics

      Vol:
    E97-A No:10
      Page(s):
    2011-2020

    Sound source localization (SSL), with a binaural input in practical environments, is a challenging task due to the effects of noise and reverberation. In psychoacoustic research field, one of the theories to explain the mechanism of human perception in such environments is the well-known equalization-cancellation (EC) model. Motivated by the EC theory, this paper investigates a binaural SSL method by integrating EC procedures into a beamforming technique. The principle idea is that the EC procedures are first utilized to eliminate the sound signal component at each candidate direction respectively; direction of sound source is then determined as the direction at which the residual energy is minimal. The EC procedures applied in the proposed method differ from those in traditional EC models, in which the interference signals in rooms are accounted in E and C operations based on limited prior known information. Experimental results demonstrate that our proposed method outperforms the traditional SSL algorithms in the presence of noise and reverberation simultaneously.

  • Multiband Sector Antenna with the Same Beamwidth Employing Multiple Woodpile Metamaterial Reflectors Open Access

    Hideya SO  Atsuya ANDO  Tomohiro SEKI  Munenari KAWASHIMA  Takatoshi SUGIYAMA  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    976-985

    This paper proposes a sector base station antenna for mobile wireless communication systems employing multiple woodpile metamaterial reflectors and a multiband radiator that establishes the same beamwidth in the horizontal plane for more than two frequency bands. Electromagnetic Band Gap (EBG) characteristics of each metamaterial reflector can be controlled through structural parameters of the woodpile reflector, e.g., the rod width and rod spacing. As an example of the proposed antenna, a design for a triple-frequency-band antenna that radiates at 800 MHz, 2,GHz, and 4,GHz is shown. The algorithm used to adjust the beamwidth of the proposed antenna is newly introduced and adjusts the beamwidth to be the same for each band using the rod width of the woodpile. A prototype of the proposed antenna has the approximately 90$^{circ}$ beamwidth in the horizontal plane at the three frequencies, and the measurement results agree well with the electromagnetic field simulation results.

  • A Robust Geometric Approach to Room Compensation for Sound Field Rendering

    Antonio CANCLINI  Dejan MARKOVIC  Lucio BIANCHI  Fabio ANTONACCI  Augusto SARTI  Stefano TUBARO  

     
    PAPER

      Vol:
    E97-A No:9
      Page(s):
    1884-1892

    In this manuscript we present a methodology for reducing the impact of the hosting room reflections in sound field rendering applications based on loudspeaker arrays. The problem is formulated in a least-squares sense. Since matrices involved in the problem are ill-conditioned, it is important to devise a suitable technique for the regularisation of the pseudo-inverse. In this work we adopt a truncated SVD method. The truncation, in particular, aims at reducing the impact of numerical errors and also errors on the knowledge of the sound speed. We include a wide set of experimental results, which validate the proposed technique.

  • Open Domain Continuous Filipino Speech Recognition: Challenges and Baseline Experiments

    Federico ANG  Rowena Cristina GUEVARA  Yoshikazu MIYANAGA  Rhandley CAJOTE  Joel ILAO  Michael Gringo Angelo BAYONA  Ann Franchesca LAGUNA  

     
    PAPER-Speech and Hearing

      Vol:
    E97-D No:9
      Page(s):
    2443-2452

    In this paper, a new database suitable for HMM-based automatic Filipino speech recognition is described for the purpose of training a domain-independent, large-vocabulary continuous speech recognition system. Although it is known that high-performance speech recognition systems depend on a superior speech database used in the training stage, due to the lack of such an appropriate database, previous reports on Filipino speech recognition had to contend with serious data sparsity issues. In this paper we alleviate such sparsity through appropriate data analysis that makes the evaluation results more reliable. The best system is identified through its low word-error rate to a cross-validation set containing almost three hours of unknown speech data. Language-dependent problems are discussed, and their impact on accuracy was analyzed. The approach is currently data driven, however it serves as a competent baseline model for succeeding future developments.

  • An Oscillation-Based On-Chip Temperature-Aware Dynamic Voltage and Frequency Scaling Scheme in System-on-a-Chip

    Katherine Shu-Min LI  Yingchieh HO  Yu-Wei YANG  Liang-Bi CHEN  

     
    PAPER-Circuit Implementations

      Vol:
    E97-D No:9
      Page(s):
    2320-2329

    The excessively high temperature in a chip may cause circuit malfunction and performance degradation, and thus should be avoided to improve system reliability. In this paper, a novel oscillation-based on-chip thermal sensing architecture for dynamically adjusting supply voltage and clock frequency in System-on-a-Chip (SoC) is proposed. It is shown that the oscillation frequency of a ring oscillator reduces linearly as the temperature rises, and thus provides a good on-chip temperature sensing mechanism. An efficient Dynamic Voltage-to-Frequency Scaling (DF2VS) algorithm is proposed to dynamically adjust supply voltage according to the oscillation frequencies of the ring oscillators distributed in SoC so that thermal sensing can be carried at all potential hot spots. An on-chip Dynamic Voltage Scaling or Dynamic Voltage and Frequency Scaling (DVS or DVFS) monitor selects the supply voltage level and clock frequency according to the outputs of all thermal sensors. Experimental results on SoC benchmark circuits show the effectiveness of the algorithm that a 10% reduction in supply voltage alone can achieve about 20% power reduction (DVS scheme), and nearly 50% reduction in power is achievable if the clock frequency is also scaled down (DVFS scheme). The chip temperature will be significant lower due to the reduced power consumption.

  • Design of an Energy-Efficient Ternary Current-Mode Intra-Chip Communication Link for an Asynchronous Network-on-Chip

    Akira MOCHIZUKI  Hirokatsu SHIRAHAMA  Yuma WATANABE  Takahiro HANYU  

     
    PAPER-Communication for VLSI

      Vol:
    E97-D No:9
      Page(s):
    2304-2311

    An energy-efficient intra-chip communication link circuit with ternary current signaling is proposed for an asynchronous Network-on-Chip. The data signal encoded by an asynchronous three-state protocol is represented by a small-voltage-swing three-level intermediate signal, which results in the reduction of transition delay and achieving energy-efficient data transfer. The three-level voltage is generated by using a combination of dynamically controlled current sources with feedback loop mechanism. Moreover, the proposed circuit contains a power-saving scheme where the dynamically controlled transistors also are utilized. By cutting off the current paths when the data transfer on the communication link is inactive, the power dissipation can be greatly reduced. It is demonstrated that the average data-transfer speed is about 1.5 times faster than that of a binary CMOS implementation using a 130nm CMOS technology at the supply voltage of 1.2V.

  • Compressed Sampling and Source Localization of Miniature Microphone Array

    Qingyun WANG  Xinchun JI  Ruiyu LIANG  Li ZHAO  

     
    LETTER

      Vol:
    E97-A No:9
      Page(s):
    1902-1906

    In the traditional microphone array signal processing, the performance degrades rapidly when the array aperture decreases, which has been a barrier restricting its implementation in the small-scale acoustic system such as digital hearing aids. In this work a new compressed sampling method of miniature microphone array is proposed, which compresses information in the internal of ADC by means of mixture system of hardware circuit and software program in order to remove the redundancy of the different array element signals. The architecture of the method is developed using the Verilog language and has already been tested in the FPGA chip. Experiments of compressed sampling and reconstruction show the successful sparseness and reconstruction for speech sources. Owing to having avoided singularity problem of the correlation matrix of the miniature microphone array, when used in the direction of arrival (DOA) estimation in digital hearing aids, the proposed method has the advantage of higher resolution compared with the traditional GCC and MUSIC algorithms.

  • Asynchronous Stochastic Decoding of LDPC Codes: Algorithm and Simulation Model

    Naoya ONIZAWA  Warren J. GROSS  Takahiro HANYU  Vincent C. GAUDET  

     
    PAPER-VLSI Architecture

      Vol:
    E97-D No:9
      Page(s):
    2286-2295

    Stochastic decoding provides ultra-low-complexity hardware for high-throughput parallel low-density parity-check (LDPC) decoders. Asynchronous stochastic decoding was proposed to demonstrate the possibility of low power dissipation and high throughput in stochastic decoders, but decoding might stop before convergence due to “lock-up”, causing error floors that also occur in synchronous stochastic decoding. In this paper, we introduce a wire-delay dependent (WDD) scheduling algorithm for asynchronous stochastic decoding in order to reduce the error floors. Instead of assigning the same delay to all computation nodes in the previous work, different computation delay is assigned to each computation node depending on its wire length. The variation of update timing increases switching activities to decrease the possibility of the “lock-up”, lowering the error floors. In addition, the WDD scheduling algorithm is simplified for the hardware implementation in order to eliminate time-averaging and multiplication functions used in the original WDD scheduling algorithm. BER performance using a regular (1024, 512) (3,6) LDPC code is simulated based on our timing model that has computation and wire delay estimated under ASPLA 90nm CMOS technology. It is demonstrated that the proposed asynchronous decoder achieves a 6.4-9.8× smaller latency than that of the synchronous decoder with a 0.25-0.3 dB coding gain.

  • A Lower Bound on the Gate Count of Toffoli-Based Reversible Logic Circuits

    Takashi HIRAYAMA  Hayato SUGAWARA  Katsuhisa YAMANAKA  Yasuaki NISHITANI  

     
    PAPER-Reversible/Quantum Computing

      Vol:
    E97-D No:9
      Page(s):
    2253-2261

    We present a new lower bound on the number of gates in reversible logic circuits that represent a given reversible logic function, in which the circuits are assumed to consist of general Toffoli gates and have no redundant input/output lines. We make a theoretical comparison of lower bounds, and prove that the proposed bound is better than the previous one. Moreover, experimental results for lower bounds on randomly-generated reversible logic functions and reversible benchmarks are given. The results also demonstrate that the proposed lower bound is better than the former one.

  • Experimental Study on Arc Duration under Different Atmospheres

    Chen LI  Zhenbiao LI  Qian WANG  Du LIU  Makoto HASEGAWA  Lingling LI  

     
    PAPER

      Vol:
    E97-C No:9
      Page(s):
    843-849

    To clarify the dependence of arc duration on atmosphere, experiments were conducted under conditions of air, N$_{2}$, Ar, He and CO$_{2}$ with the pressure of 0.1,MPa in a 14,V/28,V/42,V circuit respectively. A quantitative relationship between arc duration and gas parameters such as ionization potential, thermal conductivity was obtained from the experimental data. Besides, the inherent mechanism of influence of atmosphere on arc duration was discussed.

  • Experimental Study on Arc Motion and Voltage Fluctuation at Slowly Separating Contact with External DC Magnetic Field

    Yoshiki KAYANO  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E97-C No:9
      Page(s):
    858-862

    Since electromagnetic (EM) noise resulting from an arc discharge disturbs other electric devices, parameters on electromagnetic compatibility, as well as lifetime and reliability, are important properties for electrical contacts. To clarify the characteristics and the mechanism of the generation of the EM noise, the arc column and voltage fluctuations generated by slowly breaking contacts with external direct current (DC) magnetic field, up to 20,mT, was investigated experimentally using Ag$_{90.7{ m wt%}}$SnO$_{2,9.3{ m wt}%}$ material. Firstly the motion of the arc column is measured by high-speed camera. Secondary, the distribution of the motion of the arc and contact voltage are discussed. It was revealed that the contact voltage fluctuation in the arc duration is related to the arc column motion.

  • Outage Probability of N-th Best User Selection in Multiuser Two-Way Relay Networks over Nakagami-m Fading

    Jie YANG  Yingying YUAN  Nan YANG  Kai YANG  Xiaofei ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1987-1993

    We analyze the outage probability of the multiuser two-way relay network (TWRN) where the N-th best mobile user (MU) out of M MUs and the base station (BS) exchange messages with the aid of an amplify-and-forward relay. In the analysis, we focus on the practical unbalanced Nakagami-m fading between the MUs-relay link and the relay-BS link. We also consider both perfect and outdated channel state information (CSI) between the MUs and the relay. We first derive tight closed-form lower bounds on the outage probability. We then derive compact expressions for the asymptotic outage probability to explicitly characterize the network performance in the high signal-to-noise ratio regime. Based on our asymptotic results, we demonstrate that the diversity order is determined by both Nakagami-m fading parameters, M, and N when perfect CSI is available. When outdated CSI is available, the diversity order is determined by Nakagami-m fading parameters only. In addition, we quantify the contributions of M, N, and the outdated CSI to the outage probability via the array gain.

  • Performance Analysis and Optimization of the Relay Multicast System with Space-Time Coding

    Nan WANG  Ming CHEN  Jianxin DAI  Xia WU  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E97-A No:9
      Page(s):
    2005-2010

    In a sector of a single cell, due to the fading characteristic of wireless channels, several decode-and-forward relay stations are deployed to form a two-hop relay-assisted multicast system. We propose two schemes for the system, the first scheme combines the use of space-time code and distributed space-time code (DSTC), and the second one combines the use of DSTC and maximum ratio combining. We give an outage probability analysis for both of them. Based on this analysis, we manage to maximize the spectral efficiency under a preset outage probability confinement by finding out the optimal power allocation and relay location strategies. We use genetic algorithms to verify our analysis and numerical results show that the schemes proposed by us significantly outperform the scheme in previous work. We also show the effect of path loss exponent on the optimal strategy.

4721-4740hit(18690hit)