The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

5741-5760hit(18690hit)

  • Reflection-Geometry Measurements of Biological Materials Using Photonically Generated Millimeter Waves

    Hiroshi YAMAMOTO  Hiroshi ITO  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    235-240

    This paper describes two promising millimeter-wave measurement techniques suitable for biological materials. One is reflection-geometry imaging using a low-coherence signal, and the other is millimeter-wave ellipsometry. Imaging porcine tissue during the desiccation process, we found the temporal variation of the reflection intensity to be well explained by an exponential decrease of the relative dielectric constant. Ellipsometry results showed that the complex relative dielectric constant also decreased exponentially with time during the desiccation process and that for bovine tissue the gradients for the real and imaginary parts of the constant were different. The implications of these results on the distribution of water in biological tissues are discussed.

  • 40-Gb/s and Highly Accurate All-Optical Intensity Limiter Driving Low-Power-Consumption Based on Self-Phase Modulation by Using Numerical Simulation

    Kentaro KAWANISHI  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    220-222

    We report a 40-Gb/s and highly accurate intensity limiter with a single Erbium-Doped Fiber Amplifier (EDFA) for low-power-consumption driving intensity limiting. The intensity limiter based on self-phase modulation with an appropriate pre-chirping procedure makes it possible, which provides a highly accurate limiting of less than 0.01 dB. We fed 40-Gb/s signals with 2.69 dB intensity fluctuation and 4.7 dB improvement on the receiver sensitivity was obtained for a bit error rate of 10-9 by using a numerical simulation.

  • A 4–10 bit, 0.4–1 V Power Supply, Power Scalable Asynchronous SAR-ADC in 40 nm-CMOS with Wide Supply Voltage Range SAR Controller

    Akira SHIKATA  Ryota SEKIMOTO  Kentaro YOSHIOKA  Tadahiro KURODA  Hiroki ISHIKURO  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    443-452

    This paper presents a wide range in supply voltage, resolution, and sampling rate asynchronous successive approximation register (SAR) analog-to-digital converter (ADC). The proposed differential flip-flop in SAR logic and high efficiency wide range delay element extend the flexibility of speed and resolution tradeoff. The ADC fabricated in 40 nm CMOS process covers 4–10 bit resolution and 0.4–1 V power supply range. The ADC achieved 49.8 dB SNDR and the peak FoM of 3.4 fJ/conv. with 160 kS/sec at 0.4 V single power supply voltage. At 10 bit mode and 1 V operation, up to 10 MS/s, the FoM is below 10 fJ/conv. while keeping ENOB of 8.7 bit.

  • Amplification Characterization of Dissipative Soliton and Stretched Pulse Produced by Yb-Doped Fiber Laser Oscillator

    Junichi HAMAZAKI  Norihiko SEKINE  Iwao HOSAKO  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    201-203

    To obtain an ultra-short high-intensity pulse source, we investigated the amplification characteristics of two types of pulses (dissipative soliton and stretched pulses) produced by our Yb-doped fiber laser oscillator. Our results show that the dissipative soliton pulse can be amplified with less deterioration than the stretched pulse.

  • Improved Frequency Offset Estimation in OFDM Systems Using Periodic Training Sequence

    Chi KUO  Jin-Fu CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    585-594

    In this paper, an extended best linear unbiased estimator (EBLUE) based on a periodic training sequence is proposed and investigated for frequency offset estimation in orthogonal frequency division multiplexing (OFDM) systems. The structure of EBLUE is general and flexible so it adapts to different complexity constraints, and is attractive in practical implementation. Performance analysis and design strategy of EBLUE are provided to realize the best tradeoff between performance and complexity. Moreover, closed-form results of both weight and performance make EBLUE even more attractive in practical implementation. Both the performance and complexity of EBLUE are compared with other proposals and the Cramer-Rao lower bound (CRLB) to demonstrate the merit of EBLUE.

  • The Properties of the FCSR-Based Self-Shrinking Sequence

    Huijuan WANG  Qiaoyan WEN  Jie ZHANG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E96-A No:2
      Page(s):
    626-634

    In the construction of a no-linear key-stream generator, self-shrinking is an established way of getting the binary pseudo-random periodic sequences in cryptography design. In this paper, using the theoretical analysis, we mainly study the self-shrinking sequence based on the l-sequence, and the theoretical results reflect its good cryptography properties accurately, such that it has the last period T = pe(p-1)/2 when T is an odd number, and the expected value of its autocorrelation belongs to {0,1/T and the variance is O(T/ln4T). Furthermore, we find that the 2-adic complexity of the self-shrinking sequence based on the l-sequence is large enough to resist the Rational Approximation attack.

  • A Novel Precoding Scheme for Dynamic Base Station Cooperation with Overlapped Clusters

    Jie GONG  Sheng ZHOU  Lu GENG  Meng ZHENG  Zhisheng NIU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    656-659

    In this letter, we propose a novel precoding scheme for base station (BS) cooperation in downlink cellular networks that allow overlapped clusters. The proposed precoding scheme is designed to mitigate the overlapping-BS interference by maximizing the so-called clustered virtual signal-to-interference-plus-noise ratio (CVSINR). Simulations show that with the proposed scheme, overlapped clustering provides substantial throughput gain over the traditional non-overlapped clustering methods, and user fairness is also improved.

  • A Digitally-Controlled SMPS Using a Novel High-Resolution DPWM Generator Based on a Pseudo Relaxation-Oscillation Technique

    Ji-Hoon LIM  Won-Young JUNG  Yong-Ju KIM  Inchae SONG  Jae-Kyung WEE  

     
    PAPER-Electronic Circuits

      Vol:
    E96-C No:2
      Page(s):
    277-284

    We suggest a novel digitally-controlled SMPS using a high-resolution DPWM generator. In the proposed circuit, the duty ratio of the DPWM is determined by the voltage slope control of an internal capacitor using a pseudo relaxation-oscillation technique. This new control method has a simpler structure, and consumes less power compared to a conventional digitally-controlled SMPS. Therefore, the proposed circuit is able to operate at a high switching frequency (1 MHz10 MHz) obtained from a relatively low internal operating frequency (10 MHz100 MHz) with a small area. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit, including the output buffer driver, is 15 mA at 10 MHz switching frequency. The proposed circuit is designed to supply a maximum 1A with maximum DPWM duty ratio of 90%. The output voltage ripple is 7 mV at 3.3 V output voltage. To verify the operation of the proposed circuit, we performed a simulation with Dongbu Hitek BCD 0.35 µm technology.

  • Design and Implementation of Security for HIMALIS Architecture of Future Networks

    Ved P. KAFLE  Ruidong LI  Daisuke INOUE  Hiroaki HARAI  

     
    PAPER

      Vol:
    E96-D No:2
      Page(s):
    226-237

    For flexibility in supporting mobility and multihoming in edge networks and scalability of the backbone routing system, future Internet is expected to be based on the concept of ID/locator split. Heterogeneity Inclusion and Mobility Adaptation through Locator ID Separation (HIMALIS) has been designed as a generic future network architecture based on ID/locator split concept. It can natively support mobility, multihoming, scalable backbone routing and heterogeneous protocols in the network layer of the new generation network or future Internet. However, HIMALIS still lacks security functions to protect itself from various attacks during the procedures of storing, updating, and retrieving of ID/locator mappings, such as impersonation attacks. Therefore, in this paper, we address the issues of security functions design and implementation for the HIMALIS architecture. We present an integrated security scheme consisting of mapping registration and retrieval security, network access security, communication session security, and mobility security. Through the proposed scheme, the hostname to ID and locator mapping records can be securely stored and updated in two types of name registries, domain name registry and host name registry. Meanwhile, the mapping records retrieved securely from these registries are utilized for securing the network access process, communication sessions, and mobility management functions. The proposed scheme provides comprehensive protection of both control and data packets as well as the network infrastructure through an effective combination of asymmetric and symmetric cryptographic functions.

  • Location-Aware Optimal Resource Selection Method for P2P-Based Contents Management and Real-Time Distribution

    Hiroshi YAMAMOTO  Katsuyuki YAMAZAKI  

     
    PAPER

      Vol:
    E96-D No:2
      Page(s):
    213-225

    With the wide-spread use of high-speed network connections and high performance mobile/sensor terminals available, new interactive services based on real-time contents have become available over the Internet. In these services, end-nodes (e.g, smart phone, sensors), which are dispersed over the Internet, generates the real-time contents (e.g, live video, sensor data about human activity), and those contents are utilized to support many kinds of human activities seen in the real world. For the services, a new decentralized contents distribution system which can accommodate a large number of content distributions and which can minimize the end-to-end streaming delay between the content publisher and the subscribers is proposed. In order to satisfy the requirements, the proposed content distribution system is equipped with utilizing two distributed resource selection methods. The first method, distributed hash table (DHT)-based contents management, makes it possible for the system to efficiently decide and locate the server managing content distributions in completely decentralized manner. And, the second one, location-aware server selection, is utilized to quickly select the appropriate servers that distribute the streamed contents to all subscribers in real time. This paper considers the performance of the proposed resource selection methods using a realistic computer simulation and shows that the system with the proposed methods has scalability for a large-scale distributed system that attracts a very large number of users, and achieves real-time locating of the contents without degrading end-to-end streaming delay of content.

  • 100-GS/s 5-Bit Real-Time Optical Quantization for Photonic Analog-to-Digital Conversion

    Takema SATOH  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    223-226

    We report a trial of 100-GS/s optical quantization with 5-bit resolution using soliton self-frequency shift (SSFS) and spectral compression. We confirm that 100-GS/s 5-bit optical quantization is realized to quantize a 5.0-GHz sinusoid electrical signal in simulation. In order to experimentally verify the possibility of 100-GS/s 5-bit optical quantization, we execute 5-bit optical quantization by using two sampled signals with 10-ps intervals.

  • Impact of the Primary User's Power Allocation on the Performance of the Secondary User in Cognitive Radio Networks

    Ding XU  Zhiyong FENG  Ping ZHANG  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:2
      Page(s):
    668-672

    In spectrum sharing cognitive radio (CR) networks, secondary user (SU) is allowed to share the same spectrum band concurrently with primary user (PU), with the condition that the SU causes no harmful interference to the PU. In this letter, the ergodic and outage capacity loss constraints are proposed to protect the PU according to its service types. We investigate the performance of the SU in terms of ergodic capacity under various power allocation policies of the PU. Specifically, three PU power allocation policies are considered, namely waterfilling, truncated channel inversion with fixed rate (TIFR) and constant power allocation. We obtain the ergodic capacities of the SU under the three PU power allocation policies. The numerical results show that the PU waterfilling and TIFR power allocation policies are superior to the PU constant power allocation in terms of the capacity of the PU. In particular, it is shown that, with respect to the ergodic capacity of the SU, the PU waterfilling power allocation is superior to the PU constant power allocation, while the PU TIFR power allocation is inferior to the PU constant power allocation.

  • High-Speed Full-Duplex Optical Wireless Communication System with Single Channel Imaging Receiver for Personal Area Networks

    Ke WANG  Ampalavanapillai NIRMALATHAS  Christina LIM  Efstratios SKAFIDAS  

     
    PAPER

      Vol:
    E96-C No:2
      Page(s):
    180-186

    In this paper, we propose a high-speed full-duplex optical wireless communication system using a single channel imaging receiver for personal area network applications. This receiver is composed of an imaging lens, a small sensitive-area photodiode, and a 2-aixs actuator and it can reject most of the background light. Compared with the previously proposed system with single wide field-of-view (FOV) non-imaging receiver, the coverage area at 12.5 Gb/s is extended by > 20%. Furthermore, since the rough location information of the user is available in our proposed system, instead of searching for the focused light spot over a large area on the focal plane of the lens, only a small possible area needs to be scanned. In addition, by pre-setting a proper comparison threshold when searching for the focused light spot, the time needed for searching can be further reduced. Proof-of-concept experiments have been carried out and the results show that with this partial searching algorithm and pre-set threshold, better performance is achieved.

  • User Scheduling Algorithms for Downlink MU-MIMO System Based on the SCSI

    Qiang SUN  Chen SUN  Shi JIN  Yuan ZHANG  Xiqi GAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:2
      Page(s):
    651-655

    In this paper, we investigate the user scheduling algorithms with statistical eigen-mode transmission (SET) for downlink multiuser multiple-input multiple-output (MU-MIMO) system by utilizing the statistical channel state information (SCSI). Given the objective of maximizing the ergodic achievable sum rate per group (EASRPG), our first proposal, the Munkres user assignment algorithm (MUAA), solves the optimal user grouping problem. Different from the conventional user grouping algorithm (e.g. max-min method), MUAA can efficiently solve the user assignment problem and acquire an optimal solution. However, some user groups of the optimal solution called “unfriendly” groups severely degrade the EASRPG by performing the multiuser SET (MU-SET) due to excessive inter-user interference. To overcome this obstacle, the MUAA with sequential iterative separation (MUAA-SIS) is proposed to find the “unfriendly” groups and switch from the MU-SET to the single-user SET. Finally, our numerical results show that MUAA-SIS offers a higher EASRPG.

  • Large-Range Switchable Microwave & Millimeter-Wave Signal Generator Based on a Triple-Wavelength Fiber Laser

    Zhaohui LI  Haiyan SHANG  Xinhuan FENG  Jianping LI  Dejun FENG  Bai-ou GUAN  

     
    BRIEF PAPER

      Vol:
    E96-C No:2
      Page(s):
    197-200

    A large-range switchable RF signal generator is demonstrated using a triple-wavelength fiber laser with uneven-frequency-spacing. Due to the birefringence characteristics of the triple-wavelength fiber laser, switchable dual-wavelength operation can be obtained by adjusting a polarization controller. Therefore, we can achieve a stable RF signals at microwave or millimeter-wave band.

  • Reversible Data Hiding for BTC-Compressed Images Based on Lossless Coding of Mean Tables

    Yong ZHANG  Shi-Ze GUO  Zhe-Ming LU  Hao LUO  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E96-B No:2
      Page(s):
    624-631

    Reversible data hiding has been a hot research topic since both the host media and hidden data can be recovered without distortion. In the past several years, more and more attention has been paid to reversible data hiding schemes for images in compressed formats such as JPEG, JPEG2000, Vector Quantization (VQ) and Block Truncation Coding (BTC). Traditional data hiding schemes in the BTC domain modify the BTC encoding stage or BTC-compressed data according to the secret bits, and they have no ability to reduce the bit rate but may reduce the image quality. This paper presents a novel reversible data hiding scheme for BTC-compressed images by further losslessly encoding the BTC-compressed data according to the secret bits. First, the original BTC technique is performed on the original image to obtain the BTC-compressed data which can be represented by a high mean table, a low mean table and a bitplane sequence. Then, the proposed reversible data hiding scheme is performed on both the high mean table and low mean table. Our hiding scheme is a lossless joint hiding and compression method based on 22 blocks in mean tables, thus it can not only hide data in mean tables but also reduce the bit rate. Experiments show that our scheme outperforms three existing BTC-based data hiding works, in terms of the bit rate, capacity and efficiency.

  • A 6 bit, 7 mW, 700 MS/s Subranging ADC Using CDAC and Gate-Weighted Interpolation

    Hyunui LEE  Yusuke ASADA  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    422-433

    A 6-bit, 7 mW, 700 MS/s subranging ADC using Capacitive DAC (CDAC) and gate-weighted interpolation fabricated in 90 nm CMOS technology is demonstrated. CDACs are used as a reference selection circuit instead of resistive DACs (RDAC) for reducing settling time and power dissipation. A gate-weighted interpolation scheme is also incorporated to the comparators, to reduce the circuit components, power dissipation and mismatch of conversion stages. By virtue of recent technology scaling, an interpolation can be realized in the saturation region with small error. A digital offset calibration technique using capacitor reduces comparator's offset voltage from 10 mV to 1.5 mV per sigma. Experimental results show that the proposed ADC achieves a SNDR of 34 dB with calibration and FoM is 250 fJ/conv., which is very attractive as an embedded IP for low power SoCs.

  • An Area-Time Efficient Key Equation Solver with Euclidean Algorithm for Reed-Solomon Decoders

    Kazuhito ITO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E96-A No:2
      Page(s):
    609-617

    Reed-Solomon (RS) code is one of the well-known and widely used error correction codes. Among the components of a hardware RS decoder, the key equation solver (KES) unit occupies a relatively large portion of the hardware. It is important to develop an efficient KES architecture to implement efficient RS decoders. In this paper, a novel polynomial division technique used in the Euclidean algorithm (EA) of the KES is presented which achieves the short critical path delay of one Galois multiplier and one Galois adder. Then a KES architecture with the EA is proposed which is efficient in the sense of the product of area and time.

  • Low Complexity Logarithmic and Anti-Logarithmic Converters for Hybrid Number System Processors and DSP Applications

    Van-Phuc HOANG  Cong-Kha PHAM  

     
    PAPER-Digital Signal Processing

      Vol:
    E96-A No:2
      Page(s):
    584-590

    This paper presents an efficient approach for logarithmic and anti-logarithmic converters which can be used in the arithmetic unit of hybrid number system processors and logarithm/exponent function generators in DSP applications. By employing the novel quasi-symmetrical difference method with only the simple shift-add logic and the look-up table, the proposed approach can reduce the hardware area and improve the conversion speed significantly while achieve similar accuracy compared with the previous methods. The implementation results in both FPGA and 0.18-µm CMOS technology are also presented and discussed.

  • A Relocation Planning Method for Railway Cars in Final Assembly Shop

    Yoichi NAGAO  Shinichi NAKANO  Akifumi HOSHINO  Yasushi KANETA  Toshiyuki KITA  Masakazu OKAMOTO  

     
    PAPER-Graphs and Networks

      Vol:
    E96-A No:2
      Page(s):
    554-561

    The authors propose a method to make a movement plan for relocation of the railway cars in preparation for the final assembly. It obtains solution through three steps. The first step is to extract the order constraints between the movements of the railway cars based on their locations before and after relocation. The second step is to introduce the movement which puts a railway car into another location temporarily, in order to avoid a deadlock in the movements. And the final step is to obtain the movement order for carrying out the relocation in the shortest time in accordance with the calculated order constraints by using the genetic algorithm (GA). The order constraints are resolved in advance and therefore the movement order can easily be decided by GA. As the result, the developed system takes time shorter than an expert for planning the relocation.

5741-5760hit(18690hit)