The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

6881-6900hit(18690hit)

  • Synthesis of 16 Quadrature Amplitude Modulation Using Polarization-Multiplexing QPSK Modulator

    Isao MOROHASHI  Takahide SAKAMOTO  Masaaki SUDO  Atsushi KANNO  Akito CHIBA  Junichiro ICHIKAWA  Tetsuya KAWANISHI  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1809-1814

    We propose a polarization-multiplexing QPSK modulator for synthesis of a 16 QAM signal. The generation mechanism of 16 QAM is based on an electro-optic vector digital-to-analog converter, which can generate optical multilevel signals from binary electric data sequences. A quad-parallel Mach-Zehnder modulator (QPMZM) used in our previous research requires precise control of electric signals or fabrication of a variable optical attenuator, which significantly raises the degree of difficulty to control electric signals or device fabrication. To overcome this difficulty, we developed the polarization-multiplexing QPSK modulator, which improved the method of superposition of QPSK signals. In the polarization-multiplexing QPSK modulator, two QPSK signals are output with orthogonal polarization and superposed through a polarizer. The amplitude ratio between the two QPSK signals can be precisely controlled by rotating the polarizer to arrange the 16 symbols equally. Generation of 16 QAM with 40 Gb/s and a bit error rate of 5.6910-5 was successfully demonstrated using the polarization-multiplexing QPSK modulator. This modulator has simpler configuration than the previous one, utilized a dual-polarization MZM, alleviating complicated control of electric signals.

  • Compensation of Nonlinear Fibre Impairments in Coherent Systems Employing Spectrally Efficient Modulation Formats

    Danish RAFIQUE  Jian ZHAO  Andrew D. ELLIS  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1815-1822

    We investigate electronic mitigation of linear and nonlinear fibre impairments and compare various digital signal processing techniques, including electronic dispersion compensation (EDC), single-channel back-propagation (SC-BP) and back-propagation with multiple channel processing (MC-BP) in a nine-channel 112 Gb/s PM-mQAM (m=4,16) WDM system, for reaches up to 6,320 km. We show that, for a sufficiently high local dispersion, SC-BP is sufficient to provide a significant performance enhancement when compared to EDC, and is adequate to achieve BER below FEC threshold. For these conditions we report that a sampling rate of two samples per symbol is sufficient for practical SC-BP, without significant penalties.

  • Constructing Correlation Immune Symmetric Boolean Functions

    Jie PENG  Haibin KAN  

     
    LETTER-Coding Theory

      Vol:
    E94-A No:7
      Page(s):
    1591-1596

    A Boolean function is said to be correlation immune if its output leaks no information about its input values. Such functions have many applications in computer security practices including the construction of key stream generators from a set of shift registers. Finding methods for easy construction of correlation immune Boolean functions has been an active research area since the introduction of the notion by Siegenthaler. In this paper, we present several constructions of nonpalindromic correlation immune symmetric Boolean functions. Our methods involve finding binomial coefficient identities and obtaining new correlation immune functions from known correlation immune functions. We also consider the construction of higher order correlation immunity symmetric functions and propose a class of third order correlation immune symmetric functions on n variables, where n+1(≥ 9) is a perfect square.

  • Sub-Category Optimization through Cluster Performance Analysis for Multi-View Multi-Pose Object Detection

    Dipankar DAS  Yoshinori KOBAYASHI  Yoshinori KUNO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E94-D No:7
      Page(s):
    1467-1478

    The detection of object categories with large variations in appearance is a fundamental problem in computer vision. The appearance of object categories can change due to intra-class variations, background clutter, and changes in viewpoint and illumination. For object categories with large appearance changes, some kind of sub-categorization based approach is necessary. This paper proposes a sub-category optimization approach that automatically divides an object category into an appropriate number of sub-categories based on appearance variations. Instead of using predefined intra-category sub-categorization based on domain knowledge or validation datasets, we divide the sample space by unsupervised clustering using discriminative image features. We then use a cluster performance analysis (CPA) algorithm to verify the performance of the unsupervised approach. The CPA algorithm uses two performance metrics to determine the optimal number of sub-categories per object category. Furthermore, we employ the optimal sub-category representation as the basis and a supervised multi-category detection system with χ2 merging kernel function to efficiently detect and localize object categories within an image. Extensive experimental results are shown using a standard and the authors' own databases. The comparison results reveal that our approach outperforms the state-of-the-art methods.

  • Construction of Frequency-Hopping/Time-Spreading Two-Dimensional Optical Codes Using Quadratic and Cubic Congruence Code

    Chongfu ZHANG  Kun QIU  Yu XIANG  Hua XIAO  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E94-B No:7
      Page(s):
    1883-1891

    Quadratic congruence code (QCC)-based frequency-hopping and time-spreading (FH/TS) optical orthogonal codes (OOCs), and the corresponding expanded cardinality were recently studied to improve data throughput and code capacity. In this paper, we propose a new FH/TS two-dimensional (2-D) code using the QCC and the cubic congruence code (CCC), named as the QCC/CCC 2-D code. Additionally the expanded CCC-based 2D codes are also considered. In contrast to the conventional QCC-based 1-D and QCC-based FH/TS 2-D optical codes, our analysis indicates that the code capacity of the CCC-based 1-D and CCC-based FH/TS 2-D codes can be improved with the same code weight and length, respectively.

  • TDoA Localization Based on Particle Swarm Optimization in UWB Systems

    Tan N. LE  Jaewoon KIM  Yoan SHIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2013-2021

    We propose an improved TDoA (Time Difference of Arrival) localization scheme based on PSO (Particle Swarm Optimization) in UWB (Ultra Wide Band) systems. The proposed scheme is composed of two steps: the re-estimation of TDoA parameters and the re-localization of tag position. In both steps, the PSO algorithm is employed to improve the performance. In the first step, the proposed scheme re-estimates the TDoA parameters obtained by traditional TDoA localization to reduce the TDoA estimation error. In the second step, the proposed scheme with the TDoA parameters estimated in the first step, re-localizes the tag to minimize the location error. Simulation results show that the proposed scheme achieves better location performance than the traditional TDoA localization in various channel environments.

  • A 65 nm 1.2 V 7-bit 1 GSPS Folding-Interpolation A/D Converter with a Digitally Self-Calibrated Vector Generator

    Daeyun KIM  Minkyu SONG  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:7
      Page(s):
    1199-1205

    In this paper, a 65 nm 1.2 V 7-bit 1GSPS folding-interpolation A/D converter with a digitally self-calibrated vector generator is proposed. The folding rate is 2 and the interpolation rate is 8. A self-calibrated vector generation circuit with a feedback loop and a recursive digital code inspection is described. The circuit reduces the variation of the offset voltage caused by process mismatches, parasitic resistors, and parasitic capacitances. The chip has been fabricated with a 65 nm 1-poly 6-metal CMOS technology. The effective chip area is 0.87 mm2 and the power consumption is about 110 mW with a 1.2 V power supply. The measured SNDR is about 39.1 dB when the input frequency is 250 MHz at a 1 GHz sampling frequency. The measured SNDR is drastically improved in comparison with the same ADC without any calibration.

  • NUFFT- & GPU-Based Fast Imaging of Vegetation

    Amedeo CAPOZZOLI  Claudio CURCIO  Antonio DI VICO  Angelo LISENO  

     
    PAPER-Sensing

      Vol:
    E94-B No:7
      Page(s):
    2092-2103

    We develop an effective algorithm, based on the filtered backprojection (FBP) approach, for the imaging of vegetation. Under the FBP scheme, the reconstruction amounts at a non-trivial Fourier inversion, since the data are Fourier samples arranged on a non-Cartesian grid. The computational issue is efficiently tackled by Non-Uniform Fast Fourier Transforms (NUFFTs), whose complexity grows asymptotically as that of a standard FFT. Furthermore, significant speed-ups, as compared to fast CPU implementations, are obtained by a parallel versions of the NUFFT algorithm, purposely designed to be run on Graphic Processing Units (GPUs) by using the CUDA language. The performance of the parallel algorithm has been assessed in comparison to a CPU-multicore accelerated, Matlab implementation of the same routine, to other CPU-multicore accelerated implementations based on standard FFT and employing linear, cubic, spline and sinc interpolations and to a different, parallel algorithm exploiting a parallel linear interpolation stage. The proposed approach has resulted the most computationally convenient. Furthermore, an indoor, polarimetric experimental setup is developed, capable to isolate and introduce, one at a time, different non-idealities of a real acquisition, as the sources (wind, rain) of temporal decorrelation. Experimental far-field polarimetric measurements on a thuja plicata (western redcedar) tree point out the performance of the set up algorithm, its robustness against data truncation and temporal decorrelation as well as the possibility of discriminating scatterers with different features within the investigated scene.

  • 3D-DCT Processor and Its FPGA Implementation

    Yuki IKEGAKI  Toshiaki MIYAZAKI  Stanislav G. SEDUKHIN  

     
    PAPER-Computer System

      Vol:
    E94-D No:7
      Page(s):
    1409-1418

    Conventional array processors randomly access input/coefficient data stored in memory many times during three-dimensional discrete cosine transform (3D-DCT) calculations. This causes a calculation bottleneck. In this paper, a 3D array processor dedicated to 3D-DCT is proposed. The array processor drastically reduces data swapping or replacement during the calculation and thus improves performance. The time complexity of the proposed NNN array processor is O(N) for an N3-size input data cube, and that of the 3D-DCT sequential calculation is O(N4). A specific I/O architecture, throughput-improved architectures, and more scalable architecture are also discussed in terms of practical implementation. Experimental results of implementation on FPGA (field-programmable gate array) suggest that our architecture provides good performance for real-time 3D-DCT calculations.

  • BER Analysis of Dual-Carrier Modulation (DCM) over Nakagami-m Fading Channel

    Hyun-Seok RYU  Jun-Seok LEE  Chung-Gu KANG  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E94-B No:7
      Page(s):
    2123-2126

    This letter provides a tight upper bound on the bit error rate (BER) over the Nakagami-m fading channel for the dual carrier modulation (DCM) scheme, which is adopted by the multi-band orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) system. Its tightness is verified with the existing result for Rayleigh fading channel, i.e., for m=1, which would be also valid for a more general fading environment.

  • Cross-Layer Optimized Rate Adaptation for Video over Wireless Multi-Rate Networks

    Jong-Ok KIM  Hideki TODE  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:7
      Page(s):
    2051-2061

    In wireless networks, the mechanism to adaptively select a link transmission rate based on channel variations is referred to as RA (rate adaptation). The operation may have a critical impact on the upper-layer application, specifically video streaming which has strict QoS requirements. Thus, RA should consider the QoS requirements and radio conditions at the same time. In this paper, we present a CV-RA (cross-layer video-oriented rate adaptation) scheme for video transmission over multi-rate wireless networks. The transmission rate is switched in a cross-layer optimized way, by simultaneously considering video R-D (rate-distortion) characteristics as well as wireless conditions. At the radio link layer, transmission rate selection is made using cross-layer optimization. As a result of RA, the effective link throughput dynamically changes. At the application layer, video source rate is adaptively controlled using cross-layer adaptation. CV-RA is compared to three traditional RA schemes. It can realize the highest possible visual communications for any channel condition. For the previous schemes, the variations of visual quality is high due to dynamic packet error rates. In contrast, for CV-RA, visual quality improves with the channel condition.

  • Adaptive Back-Off Nonlinearity Compensation for Interference Canceller in Carrier Super-Positioning Satellite Communications

    Takao HARA  Kenta KUBO  Minoru OKADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2022-2031

    Transmission performance of carrier superposed signals for frequency reuse are significantly degraded when transmitted through a satellite channel containing a nonlinear device. The extent to which the signals are degraded depends on the operating level (back off) of the transponder. This paper proposes a method to compensate for the effects of nonlinearity in the interference canceller by giving the same nonlinearity to a replica with the capability to automatically track the back off of the satellite transponder. Computer simulations show that the proposed technique significantly enhances system performance at all transponder operating levels even though it can be simply implemented in the canceller by digital signal processing circuits.

  • Design of a Smart CMOS Readout Circuit for Panoramic X-Ray Time Delay and Integration Arrays

    Chul Bum KIM  Doo Hyung WOO  Byung Hyuk KIM  Hee Chul LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E94-C No:7
      Page(s):
    1212-1219

    This paper presents a novel charge transfer CMOS readout circuit for an X-ray time delay and integration (TDI) array with a depth of 64. In this study, a charge transfer readout scheme based on CMOS technology is proposed to sum 64 stages of the TDI signal. In addition, a dead pixel elimination circuit is integrated within a chip, thus resolving the weakness of TDI arrays related to defective pixels. The proposed method is a novel CMOS solution for large depth TDI arrays. Thus, a high signal-to-noise ratio (SNR) can be acquired due to the increased TDI depth. The readout chip was fabricated with a 0.6 µm standard CMOS process for a 15064 CdTe X-ray detector array. The readout circuit was found to effectively increase the charge storage capacity up to 1.6108 electrons, providing an improved SNR by a factor of approximately 8. The measured equivalent noise charge resulting from the readout circuit was 1.68104 electrons, a negligible value compared to the shot noise from the detector.

  • Efficient Interference Cancellation Detector in Sparse Rician Frequency Selective Fading Channels

    Jieling WANG  Yinghui ZHANG  Hong YANG  Kechu YI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2178-2180

    In this letter, the interference cancellation technique is introduced to single carrier (SC) block transmission systems in sparse Rician frequency selective fading channels, and an effective equalizer is presented. Hard decision on the transmitted signal is made by commonly used SC equalizers, and every multipath signal can be constructed by the initial solution and channel state information. Then, final demodulation result is obtained by the line-of-sight component in the received signal which can be achieved by cancelling the other multipath signals in the received signal. The solution can be further used to construct the multipath signals allowing a multistage detector with higher performance to be realized. It is shown by Monte Carlo simulations in an SUI-5 channel that the new scheme offers dramatically higher performance than traditional equalization schemes.

  • Experimental Assessment of a Resilient PCE/GMPLS Controlled Translucent Wavelength Switched Optical Network

    Lei LIU  Takehiro TSURITANI  Ramon CASELLAS  Ricardo MARTÍNEZ  Raül MUÑOZ  Munefumi TSURUSAWA  Itsuro MORITA  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1831-1844

    A translucent wavelength switched optical network (WSON) is a cost-efficient infrastructure between opaque networks and transparent optical networks, which aims at seeking a graceful balance between network cost and service provisioning performance. In this paper, we experimentally present a resilient translucent WSON with the control of an enhanced path computation element (PCE) and extended generalized multi-protocol label switching (GMPLS) controllers. An adaptive routing and wavelength assignment scheme with the consideration of accumulated physical impairments, wavelength availabilities and regenerator allocation is experimentally demonstrated and evaluated for dynamic provisioning of lightpaths. By using two different network scenarios, we experimentally verify the feasibility of the proposed solutions in support of translucent WSON, and quantitatively evaluate the path computation latency, network blocking probability and service disruption time during end-to-end lightpath restoration. We also deeply analyze the experimental results and discuss the synchronization between the PCE and the network status. To the best of our knowledge, the most significant progress and contribution of this paper is that, for the first time, all the proposed methodologies in support of PCE/GMPLS controlled translucent WSON, including protocol extensions and related algorithms, are implemented in a network testbed and experimentally evaluated in detail, which allows verifying their feasibility and effectiveness when being potentially deployed into real translucent WSON.

  • An Algorithm for Attitude Signal Simulation Based on Visible Satellite Synchronous Scheduling

    Qing CHANG  Wei QI  Lvqian ZHANG  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:7
      Page(s):
    2114-2117

    In view of the frequent and complex changes of GNSS visible satellite constellation in attitude determination system, an improved attitude signal simulation algorithm for high dynamic satellite signal simulator is proposed. Based on Software Radio architecture, elevation calculation in the antenna coordinate system and channel state control logic under the condition of carrier attitude changes are introduced into the algorithm to implement synchronous scheduling of visible satellite constellation and attitude signal simulation. This work guarantees the simulator to run constantly and stably for a long time with the advantages of high precision and low complexity. Compared with synchronous positioning results from the receiver, the simulation results show that not only can the output signals of the simulator accurately reflect the carrier's attitude characteristics, but also no step error is generated and the positioning precision is not influenced when visible satellite constellation changes.

  • Resource Allocation in Cooperative OFDMA Systems Supporting Heterogeneous Services

    Danhua ZHANG  Xiaoming TAO  Jianhua LU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:7
      Page(s):
    2043-2050

    Most existing works on resource allocation in cooperative OFDMA systems have focused on homogeneous users with same service and demand. In this paper, we focus on resource allocation in a service differentiated cooperative OFDMA system where each user has a different QoS requirement. We investigate joint power allocation, relay selection and subcarrier assignment to maximize overall system rates with consideration of QoS guarantees and service support. By introducing QoS price, this combinatorial problem with exponential complexity is converted into a convex one, and a two-level dual-primal decomposition based QoS-aware resource allocation (QARA) algorithm is proposed to tackle the problem. Simulation results reveal that our proposed algorithm significantly outperforms previous works in terms of both services support and QoS satisfaction.

  • Multiple View Geometry for Curvilinear Motion Cameras

    Cheng WAN  Jun SATO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E94-D No:7
      Page(s):
    1479-1487

    This paper introduces a tensorial representation of multiple cameras with arbitrary curvilinear motions. It enables us to define a multilinear relationship among image points derived from non-rigid object motions viewed from multiple cameras with arbitrary curvilinear motions. We show the new multilinear relationship is useful for generating images and reconstructing 3D non-rigid object motions viewed from cameras with arbitrary curvilinear motions. The method is tested in real image sequences.

  • Image Inpainting Based on Adaptive Total Variation Model

    Zhaolin LU  Jiansheng QIAN  Leida LI  

     
    LETTER-Image

      Vol:
    E94-A No:7
      Page(s):
    1608-1612

    In this letter, a novel adaptive total variation (ATV) model is proposed for image inpainting. The classical TV model is a partial differential equation (PDE)-based technique. While the TV model can preserve the image edges well, it has some drawbacks, such as staircase effect in the inpainted image and slow convergence rate. By analyzing the diffusion mechanism of TV model and introducing a new edge detection operator named difference curvature, we propose a novel ATV inpainting model. The proposed ATV model can diffuse the image information smoothly and quickly, namely, this model not only eliminates the staircase effect but also accelerates the convergence rate. Experimental results demonstrate the effectiveness of the proposed scheme.

  • Traffic Adaptive Backoff Window Control for IEEE 802.15.4 MAC in Cluster-Based WSNs with Various Traffic Fluctuations

    Kazuo MORI  Katsuhiro NAITO  Hideo KOBAYASHI  

     
    PAPER-Network

      Vol:
    E94-B No:7
      Page(s):
    1901-1913

    Traffic adaptive 2-level active period control has been proposed to enhance system performance in cluster-based wireless sensor networks (WSNs) employing IEEE 802.15.4 medium access control (MAC) under temporal and spatial (geographical) non-uniform traffic environments. This paper proposes an adaptive method of controlling the backoff window for traffic adaptive 2-level active period control. The proposed method adjusts the size of the backoff window according to the length of the current active period, which is determined by 2-level active period control, and the time position for channel access in the active period. The results evaluated through computer simulations reveal that the proposed method can improve throughput as well as achieve high energy efficiency in cluster-based WSNs with non-uniform traffic distributions.

6881-6900hit(18690hit)