The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

7301-7320hit(18690hit)

  • A 9-bit 100-MS/s 1.46-mW Tri-Level SAR ADC in 65 nm CMOS

    Yanfei CHEN  Sanroku TSUKAMOTO  Tadahiro KURODA  

     
    PAPER-Circuit Design

      Vol:
    E93-A No:12
      Page(s):
    2600-2608

    A 9-bit 100-MS/s successive approximation register (SAR) ADC with low power and small area has been implemented in 65-nm CMOS technology. A tri-level charge redistribution technique is proposed to reduce DAC switching energy and settling time. By connecting bottom plates of differential capacitor arrays for charge sharing, extra reference voltage is avoided. Two reference voltages charging and discharging the capacitors are chosen to be supply voltage and ground in order to save energy and achieve a rail-to-rail input range. Split capacitor arrays with mismatch calibration are implemented for small area and small input capacitance without linearity degradation. The ADC achieves a peak SNDR of 53.1 dB and consumes 1.46 mW from a 1.2-V supply, resulting in a figure of merit (FOM) of 39 fJ/conversion-step. The total active area is 0.012 mm2 and the input capacitance is 180 fF.

  • EXIT Analysis for MAP-Based Joint Iterative Decoding of Separately Encoded Correlated Sources

    Kentaro KOBAYASHI  Takaya YAMAZATO  Masaaki KATAYAMA  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3509-3513

    We develop a mathematical framework for the extrinsic information transfer (EXIT) analysis to assess the convergence behavior of maximum a posteriori (MAP)-based joint iterative decoding of correlated sources, which are separately encoded and transmitted over noisy channels. Unlike the previous work, our approach focuses on the case side information about the correlation is not perfectly given at the joint decoder but is extracted from decoder output and updated in an iterative manner. The presented framework provides a convenient way to compare between schemes. We show that it allows us to easily and accurately predict joint decoding gain and turbo cliff position.

  • Optimal Configuration for Multiversion Real-Time Systems Using Slack Based Schedulability

    Sayuri TERADA  Toshimitsu USHIO  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2709-2716

    In an embedded control system, control performances of each job depend on its latency and a control algorithm implemented in it. In order to adapt a job set to optimize control performances subject to schedulability, we design several types of control software for each job, which will be called versions, and select one version from them when the job is released. A real-time system where each job has several versions is called a multiversion real-time system. A benefit and a CPU utilization of a job depend on the versions. So, it is an important problem to select a version of each job so as to maximize the total benefit of the system subject to a schedulability condition. Such a problem will be called an optimal configuration problem. In this paper, we assume that each version is specified by the relative deadline, the execution time, and the benefit. We show that the optimal configuration problem is transformed to a maximum path length problem. We propose an optimal algorithm based on the forward dynamic programming. Moreover, we propose sub-optimal algorithms to reduce computation times. The efficiencies of the proposed algorithms are illustrated by simulations.

  • Analyzing the On-State Power Dissipation in Stepped-Output Diode-Clamped Multi-Level Inverter

    Ehsan ESFANDIARI  Norman Bin MARIUN  Mohammad Hamiruce MARHABAN  Azmi ZAKARIA  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:12
      Page(s):
    1670-1678

    In renewable power generators, because of high initial cost and duty cycle of systems, efficiency parameter has an important place. For this reason, line frequency controlled multilevel inverters are one of most proper choices for renewable power converters. Among these, diode-clamped multilevel inverter structures are one of most important and best efficient inverters. In this paper, a simple diode-clamped equivalent circuit for exploring the efficiency under resistive loads is proposed, and based on this simple circuit, the on-state power dissipation in improved and original diode-clamped multilevel inverter under resistive loads is analyzed. Then, comparative efficiency equations are extracted for inverters that use metal oxide semiconductor field-effect transistors (MOSFETs) and other p-n junction as switches. These equations enable us to have a better idea of conducting power dissipation in diode-clamped and help us to choose appropriate switches for having a lower on-state power dissipation. Some cases are studied and in the end it is proven that the calculated efficiency under resistive load is a boundary for inductive load with the same impedance in diode-clamped inverter with p-n junction switches. This means that calculating the efficiency under resistive loads enables us to approximately predict efficiency under inductive loads.

  • Co-channel Interference Mitigation via Joint Frequency and Space Domains Base Station Cooperation for Multi-Cell OFDMA Systems

    Yizhen JIA  Xiaoming TAO  Youzheng WANG  Yukui PEI  Jianhua LU  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3469-3479

    Base Station (BS) cooperation has been considered as a promising technology to mitigate co-channel interference (CCI), yielding great capacity improvement in cellular systems. In this paper, by combining frequency domain cooperation and space domain cooperation together, we design a new CCI mitigation scheme to maximize the total utility for a multi-cell OFDMA network. The scheme formulates the CCI mitigation problem as a mixture integer programming problem, which involves a joint user-set-oriented subcarrier assignment and power allocation. A computationally feasible algorithm based on Lagrange dual decomposition is derived to evaluate the optimal value of the problem. Moreover, a low-complexity suboptimal algorithm is also presented. Simulation results show that our scheme outperforms the counterparts incorporating BS cooperation in a single domain considerably, and the proposed low-complexity algorithm achieves near optimal performance.

  • A Method of Cognizing Primary and Secondary Radio Signals

    Satoshi TAKAHASHI  

     
    PAPER

      Vol:
    E93-A No:12
      Page(s):
    2682-2690

    A cognitive radio will have to sense and discover the spectral environments where it would not cause primary radios to interfere. Because the primary radios have the right to use the frequency, the cognitive radios as the secondary radios must detect radio signals before use. However, the secondary radios also need identifying the primary and other secondary radios where the primary radios are vulnerable to interference. In this paper, a method of simultaneously identifying signals of primary and secondary radios is proposed. The proposed bandwidth differentiation assumes the primary and secondary radios use orthogonal frequency division multiplexing (OFDM), and the secondary radios use at the lower number of subcarriers than the primary radios. The false alarm and detection probabilities are analytically evaluated using the characteristic function method. Numerical evaluations are also conducted on the assumption the primary radio is digital terrestrial television broadcasting. Result showed the proposed method could achieve the false alarm probability of 0.1 and the detection probability of 0.9 where the primary and secondary radio powers were 2.5 dB and 3.6 dB higher than the noise power. In the evaluation, the reception signals were averaged over the successive 32 snapshots, and the both the primary and secondary radios used QPSK. The power ratios were 4.7 dB and 8.4 dB where both the primary and secondary radios used 64QAM.

  • Chordal Graph Based Channel Assignment for Multicast and Unicast Traffic in Wireless Mesh Networks

    Junfeng JIN  Yusheng JI  Baohua ZHAO  Hao ZHOU  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3409-3416

    With the increasing popularity of multicast and real-time streaming service applications, efficient channel assignment algorithms that handle both multicast and unicast traffic in wireless mesh networks are needed. One of the most effective approaches to enhance the capacity of wireless networks is to use systems with multiple channels and multiple radio interfaces. However, most of the past works focus on vertex coloring of a general contention graph, which is NP-Complete, and use the greedy algorithm to achieve a suboptimal result. In this paper, we combine unicast and multicast with a transmission set, and propose a framework named Chordal Graph Based Channel Assignment (CGCA) that performs channel assignment for multicast and unicast traffic in multi-channel multi-radio wireless mesh networks. The proposed framework based on chordal graph coloring minimizes the interference of the network and prevents unicast traffic from starvation. Simulation results show that our framework provides high throughput and low end-to-end delay for both multicast and unicast traffic. Furthermore, our framework significantly outperforms other well-known schemes that have a similar objective in various scenarios.

  • Evaluation of SAR and Temperature Elevation Using Japanese Anatomical Human Models for Body-Worn Devices

    Teruo ONISHI  Takahiro IYAMA  Lira HAMADA  Soichi WATANABE  Akimasa HIRATA  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E93-B No:12
      Page(s):
    3643-3646

    This paper investigates the relationship between averaged SAR (Specific Absorption Rate) over 10 g mass and temperature elevation in Japanese numerical anatomical models when devices are mounted on the body. Simplifying the radiation source as a half-wavelength dipole, the generated electrical field and SAR are calculated using the FDTD (Finite-Difference Time-Domain) method. Then the bio-heat equation is solved to obtain the temperature elevation due to the SAR derived using the FDTD method as heat source. Frequencies used in the study are 900 MHz and 1950 MHz, which are used for mobile phones. In addition, 3500 MHz is considered because this frequency is reserved for IMT-Advanced (International Mobile Telecommunication-Advanced System). Computational results obtained herein show that the 10 g-average SAR and the temperature elevation are not proportional to frequency. In addition, it is clear that those at 3500 MHz are lower than that at 1950 MHz even though the frequency is higher. It is the point to be stressed here is that good correlation between the 10 g-average SAR and the temperature elevation is observed even for the body-worn device.

  • State Transition Probability Based Sensing Duration Optimization Algorithm in Cognitive Radio

    Jin-long WANG  Xiao ZHANG  Qihui WU  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3258-3265

    In a periodic spectrum sensing framework where each frame consists of a sensing block and a data transmitting block, increasing sensing duration decreases the probabilities of both missed opportunity and interference with primary users, but increasing sensing duration also decreases the energy efficiency and the transmitting efficiency of the cognitive network. Therefore, the sensing duration to use is a trade-off between sensing performance and system efficiencies. The relationships between sensing duration and state transition probability are analyzed firstly, when the licensed channel stays in the idle and busy states respectively. Then a state transition probability based sensing duration optimization algorithm is proposed, which can dynamically optimize the sensing duration of each frame in the current idle/busy state by predicting each frame's state transition probability at the beginning of the current state. Analysis and simulation results reveal that the time-varying optimal sensing duration increases as the state transition probability increases and compared to the existing method, the proposed algorithm can use as little sensing duration in each frame as possible to satisfy the sensing performance constraints so as to maximize the energy and transmitting efficiencies of the cognitive networks.

  • A VGA 30 fps Affine Motion Model Estimation VLSI for Real-Time Video Segmentation

    Yoshiki YUNBE  Masayuki MIYAMA  Yoshio MATSUDA  

     
    PAPER-Computer System

      Vol:
    E93-D No:12
      Page(s):
    3284-3293

    This paper describes an affine motion estimation processor for real-time video segmentation. The processor estimates the dominant motion of a target region with affine parameters. The processor is based on the Pseudo-M-estimator algorithm. Introduction of an image division method and a binary weight method to the original algorithm reduces data traffic and hardware costs. A pixel sampling method is proposed that reduces the clock frequency by 50%. The pixel pipeline architecture and a frame overlap method double throughput. The processor was prototyped on an FPGA; its function and performance were subsequently verified. It was also implemented as an ASIC. The core size is 5.05.0 mm2 in 0.18 µm process, standard cell technology. The ASIC can accommodate a VGA 30 fps video with 120 MHz clock frequency.

  • Social Network Based P2P Multicast Reducing Psychological Forwarding Cost in Mobile Networks

    Hiroyuki KUBO  Ryoichi SHINKUMA  Tatsuro TAKAHASHI  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3260-3268

    The demand for data/audio streaming/video streaming multicast services in large scale networks has been increasing. Moreover, the improved transmission speed and mobile-device capability in wireless access networks enable people to use such services via their personal mobile devices. Peer-to-peer (P2P) architecture ensures scalability and robustness more easily and more economically than server-client architecture; as the number of nodes in a P2P network increases, the amount of workload per node decreases and lessens the impact of node failure. However, mobile users feel much larger psychological cost due to strict limitations on bandwidth, processing power, memory capacity, and battery life, and they want to minimize their contributions to these services. Therefore, the issue of how we can reduce this psychological cost remains. In this paper, we consider how effective a social networking service is as a platform for mobile P2P multicast. We model users' cooperative behaviors in mobile P2P multicast streaming, and propose a social-network based P2P streaming architecture for mobile networks. We also measured the psychological forwarding cost of real users in mobile P2P multicast streaming through an emulation experiment, and verify that our social-network based mobile P2P multicast streaming improves service quality by reducing the psychological forwarding cost using multi-agent simulation.

  • Two Relay-Stage Selection Cooperation in Wireless Networks and Why More than Two Is Not Necessary

    Xingyang CHEN  Lin ZHANG  Yuhan DONG  Xiuming SHAN  Yong REN  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3332-3344

    The selection cooperation is a basic and attractive scheme of cooperative diversity in the multiple relays scenario. Most previous schemes of selection cooperation consist only one relay-stage in which one relay is selected to retransmit, and the signal from the selected relay is not utilized by other relays. In this paper, we introduce a two relay-stage selection cooperation scheme. The performance can be improved by letting all other relays to utilize the signal from the first selected relay to make another selection and retransmission in the second relay-stage. We derive the closed-form expression of the outage probability of the proposed scheme in the high SNR regime. Both theoretical and numerical results suggest that the proposed scheme can reduce the outage probability compared with the traditional scheme with only one relay-stage. Furthermore, we demonstrate that more than two relay-stage can not further reduce the outage probability. We also study the dependence of the proposed scheme on stage lengths and topology, and analyze the increased overhead.

  • Improved Demons Technique with Orthogonal Gradient Information for Medical Image Registration

    Cheng LU  Mrinal MANDAL  

     
    LETTER-Biological Engineering

      Vol:
    E93-D No:12
      Page(s):
    3414-3417

    Accurate registration is crucial for medical image analysis. In this letter, we proposed an improved Demons technique (IDT) for medical image registration. The IDT improves registration quality using orthogonal gradient information. The advantage of the proposed IDT is assessed using 14 medical image pairs. Experimental results show that the proposed technique provides about 8% improvement over existing Demons-based techniques in terms of registration accuracy.

  • Superposition Coding Based Wireless Network Coding Scheme for Two-Way Cooperative Relaying

    Megumi KANEKO  Kazunori HAYASHI  Hideaki SAKAI  

     
    PAPER

      Vol:
    E93-B No:12
      Page(s):
    3354-3361

    Recent advances in cooperative communication and wireless Network Coding (NC) may lead to huge performance gains in relay systems. In this context, we focus on the two-way relay scenario, where two nodes exchange information via a common relay. We design a practical Superposition Coding (SC) based NC scheme for Decode-and-Forward (DF) half-duplex relaying, where the goal is to increase the achievable rate. By taking advantage of the direct link and by providing a suboptimal yet efficient power division among the superposed layers, our proposed SC two-way relaying scheme outperforms the reference schemes, including the well-known 3-step DF-NC scheme and the capacity of 2-step schemes for a large set of SNRs, while approaching closely the performance bound.

  • A Feature-Based Service Identification Method to Improve Productivity of Service-Oriented System

    Dongsu KANG  CheeYang SONG  Doo-Kwon BAIK  

     
    LETTER-Software System

      Vol:
    E93-D No:12
      Page(s):
    3392-3395

    This paper proposes a feature-based service identification method to improve productivity using a feature relationship; where a feature can express service properties. We define the distance measured between features by considering their selective (node) and relational (edge) attributes and present the service boundary concept. The result of an evaluation of the proposed method shows that it has higher productivity than existing methods.

  • Wireless Distributed Network: For Flexible Networking and Radio Resource Management

    Seiichi SAMPEI  Kei SAKAGUCHI  Shinsuke IBI  Koji YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E93-B No:12
      Page(s):
    3218-3227

    This paper proposes a concept for a new technical field called wireless distributed network (WDN) as a strategic technical field to enable flexible networking and radio resource management (RRM) to cope with dynamic variation of spatially distributed traffic demands. As the core technical subject areas for the WDN, this paper identifies distributed networking for flexible network creation, cooperative transmission and reception for flexible link creation, and dynamic spectrum access for flexible radio resource management, and explains their technical features and challenges for constructing the WDN. This paper also discusses some already being studied application fields as well as potential future directions of the WDN applications.

  • A Time Variant Analysis of Phase Noise in Differential Cross-Coupled LC Oscillators

    Jinhua LIU  Guican CHEN  Hong ZHANG  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E93-A No:12
      Page(s):
    2433-2440

    This paper presents a systemic analysis for phase noise performances of differential cross-coupled LC oscillators by using Hajimiri and Lee's model. The effective impulse sensitivity functions (ISF) for each noise source in the oscillator is mathematically derived. According to these effective ISFs, the phase noise contribution from each device is figured out, and phase noise contributions from the device noise in the vicinity of the integer multiples of the resonant frequency, weighted by the Fourier coefficients of the effective ISF, are also calculated. The explicit closed-form expression for phase noise of the oscillator is definitely determined. The validity of the phase noise analysis is verified by good simulation agreement.

  • On Communication and Interference Range of Multi-Gbps Millimeter-Wave WPAN System

    Chin-Sean SUM  Zhou LAN  Junyi WANG  Hiroshi HARADA  Shuzo KATO  

     
    LETTER

      Vol:
    E93-A No:12
      Page(s):
    2700-2703

    This paper investigates the communication range and interference range of millimeter-wave wireless personal area networks (WPAN) based on realistic system design. Firstly, the effective communication range of the millimeter-wave networks are calculated based on realistic physical (PHY) layer design and 60 GHz channel obtained from actual measurements. Secondly, an interference model is developed to facilitate the analysis of the impact of interferer-to-victim range on the victim link performance. It is found that system with BPSK modulation is able to support use cases with higher number of portable devices within a 3 m range, while system with 16QAM modulation is more suitable for fixed high speed data streaming devices within a shorter range of 1 m. Also, the interferer-to-victim range that causes no interference in all conditions is found to be approximately 40 m, while a 25 m range causes a typical bit error rate (BER) degradation of 1-digit (e.g. BER = 10-6 to 10-5).

  • Parallelization of Computing-Intensive Tasks of the H.264 High Profile Decoding Algorithm on a Reconfigurable Multimedia System

    Tongsheng GENG  Leibo LIU  Shouyi YIN  Min ZHU  Shaojun WEI  

     
    PAPER

      Vol:
    E93-D No:12
      Page(s):
    3223-3231

    This paper proposes approaches to perform HW/SW (Hardware/Software) partition and parallelization of computing-intensive tasks of the H.264 HiP (High Profile) decoding algorithm on an embedded coarse-grained reconfigurable multimedia system, called REMUS (REconfigurable MUltimedia System). Several techniques, such as MB (Macro-Block) based parallelization, unfixed sub-block operation etc., are utilized to speed up the decoding process, satisfying the requirements of real-time and high quality H.264 applications. Tests show that the execution performance of MC (Motion Compensation), deblocking, and IDCT-IQ (Inverse Discrete Cosine Transform-Inverse Quantization) on REMUS is improved by 60%, 73%, 88.5% in the typical case and 60%, 69%, 88.5% in the worst case, respectively compared with that on XPP PACT (a commercial reconfigurable processor). Compared with ASIC solutions, the performance of MC is improved by 70%, 74% in the typical and in the worst case, respectively, while those of Deblocking remain the same. As for IDCT_IQ, the performance is improved by 17% no matter in the typical or worst case. Relying on the proposed techniques, 1080p@30 fps of H.264 HiP@ Level 4 decoding could be achieved on REMUS when utilizing a 200 MHz working frequency.

  • The Firing Squad Synchronization Problems for Number Patterns on a Seven-Segment Display and Segment Arrays

    Kazuya YAMASHITA  Mitsuru SAKAI  Sadaki HIROSE  Yasuaki NISHITANI  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E93-D No:12
      Page(s):
    3276-3283

    The Firing Squad Synchronization Problem (FSSP), one of the most well-known problems related to cellular automata, was originally proposed by Myhill in 1957 and became famous through the work of Moore [1]. The first solution to this problem was given by Minsky and McCarthy [2] and a minimal time solution was given by Goto [3]. A significant amount of research has also dealt with variants of this problem. In this paper, from a theoretical interest, we will extend this problem to number patterns on a seven-segment display. Some of these problems can be generalized as the FSSP for some special trees called segment trees. The FSSP for segment trees can be reduced to a FSSP for a one-dimensional array divided evenly by joint cells that we call segment array. We will give algorithms to solve the FSSPs for this segment array and other number patterns, respectively. Moreover, we will clarify the minimal time to solve these problems and show that there exists no such solution.

7301-7320hit(18690hit)