The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1241-1260hit(18690hit)

  • A Ladder Spherical Evolution Search Algorithm

    Haichuan YANG  Shangce GAO  Rong-Long WANG  Yuki TODO  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2020/12/02
      Vol:
    E104-D No:3
      Page(s):
    461-464

    In 2019, a completely new algorithm, spherical evolution (SE), was proposed. The brand new search style in SE has been proved to have a strong search capability. In order to take advantage of SE, we propose a novel method called the ladder descent (LD) method to improve the SE' population update strategy and thereafter propose a ladder spherical evolution search (LSE) algorithm. With the number of iterations increasing, the range of parent individuals eligible to produce offspring gradually changes from the entire population to the current optimal individual, thereby enhancing the convergence ability of the algorithm. Experiment results on IEEE CEC2017 benchmark functions indicate the effectiveness of LSE.

  • Non-Orthogonal Packet Access Based on Low Density Signature With Phase Only Adaptive Precoding

    Satoshi DENNO  Ryoko SASAKI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/09/15
      Vol:
    E104-B No:3
      Page(s):
    328-337

    This paper proposes non-orthogonal packet access based on low density signature with phase only adaptive precoding. The proposed access allows multiple user terminals to send their packets simultaneously for implementing massive connectivity, though only one antenna is put on every terminal and on an access point. This paper proposes a criterion that defines the optimum rotation angles for the phase only precoding, and an algorithm based on the steepest descent to approach the optimum rotation angles. Moreover, this paper proposes two complexity-reduced algorithms that converge much faster than the original algorithm. When 6 packets are transmitted in 4 time slots, i.e., overloading ratio of 1.5, the proposed adaptive precoding based on all the proposed algorithms attains a gain of about 4dB at the BER of 10-4 in Rician fading channels.

  • Analysis of Switched Dynamical Systems in Perspective of Bifurcation and Multiobjective Optimization

    Ryutaro FUJIKAWA  Tomoyuki TOGAWA  Toshimichi SAITO  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2020/08/06
      Vol:
    E104-A No:2
      Page(s):
    525-531

    This paper studies a novel approach to analysis of switched dynamical systems in perspective of bifurcation and multiobjective optimization. As a first step, we analyze a simple switched dynamical system based on a boost converter with photovoltaic input. First, in a bifurcation phenomenon perspective, we consider period doubling bifurcation sets in the parameter space. Second, in a multiobjective optimization perspective, we consider a trade-off between maximum input power and stability. The trade-off is represented by a Pareto front in the objective space. Performing numerical experiments, relationship between the bifurcation sets and the Pareto front is investigated.

  • A Two-Sources Estimator Based on the Expectation of Permitted Permutations Count in Complex Networks

    Liang ZHU  Youguo WANG  Jian LIU  

     
    LETTER-Graphs and Networks

      Pubricized:
    2020/08/20
      Vol:
    E104-A No:2
      Page(s):
    576-581

    Identifying the infection sources in a network, including the sponsor of a network rumor, the servers that inject computer virus into a computer network, or the zero-patient in an infectious disease network, plays a critical role in limiting the damage caused by the infection. A two-source estimator is firstly constructed on basis of partitions of infection regions in this paper. Meanwhile, the two-source estimation problem is transformed into calculating the expectation of permitted permutations count which can be simplified to a single-source estimation problem under determined infection region. A heuristic algorithm is also proposed to promote the estimator to general graphs in a Breadth-First-Search (BFS) fashion. Experimental results are provided to verify the performance of our method and illustrate variations of error detection in different networks.

  • On Traffic Flow Evaluation for a Multimodal Transport Society

    Go ISHII  Takaaki HASEGAWA  Daichi CHONO  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    357-365

    In this paper, we build a microscopic simulator of traffic flow in a three-modal transport society for pedestrians/slow vehicles/vehicles (P/SV/V) to evaluate a post P/V society. The simulator assumes that the SV includes bicycles and micro electric vehicles, whose speed is strictly and mechanically limited up to 30 km/h. In addition, this simulator adopts an SV overtaking model. Modal shifts caused by modal diversity requires new valuation indexes. The simulator has a significant feature of a traveler-based traffic demand simulation not a vehicle-based traffic demand simulation as well as new evaluation indexes. New assessment taking this situation into account is conducted and the results explain new aspects of traffic flow in a three-mode transport society.

  • Sequences with Low Partial-Period Autocorrelation Sidelobes Constructed via Optimization Method

    Mingxing ZHANG  Zhengchun ZHOU  Meng YANG  Haode YAN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E104-A No:2
      Page(s):
    384-391

    The partial-period autocorrelation of sequences is an important performance measure of communication systems employing them, but it is notoriously difficult to be analyzed. In this paper, we propose an algorithm to design unimodular sequences with low partial-period autocorrelations via directly minimizing the partial-period integrated sidelobe level (PISL). The proposed algorithm is inspired by the monotonic minimizer for integrated sidelobe level (MISL) algorithm. Then an acceleration scheme is considered to further accelerate the algorithms. Numerical experiments show that the proposed algorithm can effectively generate sequences with lower partial-period peak sidelobe level (PPSL) compared with the well-known Zadoff-Chu sequences.

  • RAMST-CNN: A Residual and Multiscale Spatio-Temporal Convolution Neural Network for Personal Identification with EEG

    Yuxuan ZHU  Yong PENG  Yang SONG  Kenji OZAWA  Wanzeng KONG  

     
    PAPER-Biometrics

      Pubricized:
    2020/08/06
      Vol:
    E104-A No:2
      Page(s):
    563-571

    In this study we propose a method to perform personal identification (PI) based on Electroencephalogram (EEG) signals, where the used network is named residual and multiscale spatio-temporal convolution neural network (RAMST-CNN). Combined with some popular techniques in deep learning, including residual learning (RL), multi-scale grouping convolution (MGC), global average pooling (GAP) and batch normalization (BN), RAMST-CNN has powerful spatio-temporal feature extraction ability as it achieves task-independence that avoids the complexity of selecting and extracting features manually. Experiments were carried out on multiple datasets, the results of which were compared with methods from other studies. The results show that the proposed method has a higher recognition accuracy even though the network it is based on is lightweight.

  • S11 Calibration of Cut-Off Circular Waveguide with Three Materials and Related Application to Dielectric Measurement for Liquids Open Access

    Kouji SHIBATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/08/14
      Vol:
    E104-C No:2
      Page(s):
    93-101

    A method for the calibration of S11 at the front surface of a material for a coaxial-feed type cut-off circular waveguide with three reference materials inserted and no short termination condition was proposed as a preliminary step for dielectric measurement in liquids. The equations for jig calibration of S11 with these reference materials were first defined, and the electrostatic capacitance for the analytical model unique to the jig was quantified by substituting the reflection constant (calculated at frequencies of 0.50, 1.5 and 3.0 GHz using the mode-matching (MM) technique) into the equivalent circuit, assuming the sample liquid in the jig. The accuracy of S11 measured using the proposed method was then verified. S11 for the front surface of the sample material was also measured with various liquids in the jig after calibration, and the dielectric constants of the liquids were estimated as an inverse problem based on comparison of S11 calculated from an analytical model using EM analysis via the MM technique with the measured S11 values described above. The effectiveness of the proposed S11 calibration method was verified by comparison with dielectric constants estimated after S11 SOM (short, open and reference material) calibration and similar, with results showing favorable agreement with each method.

  • Identification of Multiple Image Steganographic Methods Using Hierarchical ResNets

    Sanghoon KANG  Hanhoon PARK  Jong-Il PARK  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2020/11/19
      Vol:
    E104-D No:2
      Page(s):
    350-353

    Image deformations caused by different steganographic methods are typically extremely small and highly similar, which makes their detection and identification to be a difficult task. Although recent steganalytic methods using deep learning have achieved high accuracy, they have been made to detect stego images to which specific steganographic methods have been applied. In this letter, a staganalytic method is proposed that uses hierarchical residual neural networks (ResNet), allowing detection (i.e. classification between stego and cover images) and identification of four spatial steganographic methods (i.e. LSB, PVD, WOW and S-UNIWARD). Experimental results show that using hierarchical ResNets achieves a classification rate of 79.71% in quinary classification, which is approximately 23% higher compared to using a plain convolutional neural network (CNN).

  • Single Image Haze Removal Using Iterative Ambient Light Estimation with Region Segmentation

    Yuji ARAKI  Kentaro MITA  Koichi ICHIGE  

     
    PAPER-Image

      Pubricized:
    2020/08/06
      Vol:
    E104-A No:2
      Page(s):
    550-562

    We propose an iterative single-image haze-removal method that first divides images with haze into regions in which haze-removal processing is difficult and then estimates the ambient light. The existing method has a problem wherein it often overestimates the amount of haze in regions where there is a large distance between the location the photograph was taken and the subject of the photograph; this problem prevents the ambient light from being estimated accurately. In particular, it is often difficult to accurately estimate the ambient light of images containing white and sky regions. Processing those regions in the same way as other regions has detrimental results, such as darkness or unnecessary color change. The proposed method divides such regions in advance into multiple small regions, and then, the ambient light is estimated from the small regions in which haze removal is easy to process. We evaluated the proposed method through some simulations, and found that the method achieves better haze reduction accuracy even than the state-of-the art methods based on deep learning.

  • Deterministic Supervisors for Bisimilarity Control of Partially Observed Nondeterministic Discrete Event Systems with Deterministic Specifications

    Kohei SHIMATANI  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    438-446

    We consider the bisimilarity control problem for partially observed nondeterministic discrete event systems with deterministic specifications. This problem requires us to synthesize a supervisor that achieves bisimulation equivalence of the supervised system and the deterministic specification under partial observation. We present necessary and sufficient conditions for the existence of such a deterministic supervisor and show that these conditions can be verified polynomially.

  • Dynamic Regret Analysis for Event-Triggered Distributed Online Optimization Algorithm

    Makoto YAMASHITA  Naoki HAYASHI  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    430-437

    This paper considers a distributed subgradient method for online optimization with event-triggered communication over multi-agent networks. At each step, each agent obtains a time-varying private convex cost function. To cooperatively minimize the global cost function, these agents need to communicate each other. The communication with neighbor agents is conducted by the event-triggered method that can reduce the number of communications. We demonstrate that the proposed online algorithm achieves a sublinear regret bound in a dynamic environment with slow dynamics.

  • A Differential on Chip Oscillator with 1.47-μs Startup Time and 3.3-ppm/°C Temperature Coefficient of Frequency

    Guoqiang ZHANG  Lingjin CAO  Kosuke YAYAMA  Akio KATSUSHIMA  Takahiro MIKI  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    499-505

    A differential on chip oscillator (OCO) is proposed in this paper for low supply voltage, high frequency accuracy and fast startup. The differential architecture helps the OCO achieve a good power supply rejection ratio (PSRR) without using a regulator so as to make the OCO suitable for a low power supply voltage of 1.38V. A reference voltage generator is also developed to generate two output voltages lower than Vbe for low supply voltage operation. The output frequency is locked to 48MHz by a frequency-locked loop (FLL) and a 3.3-ppm/°C temperature coefficient of frequency is realized by the differential voltage ratio adjusting (differential VRA) technique. The startup time is only 1.47μs because the differential OCO is not necessary to charge a big capacitor for ripple reduction.

  • Multi Modulus Signal Adaptation for Semi-Blind Uplink Interference Suppression on Multicell Massive MIMO Systems

    Kazuki MARUTA  Chang-Jun AHN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/08/18
      Vol:
    E104-B No:2
      Page(s):
    158-168

    This paper expands our previously proposed semi-blind uplink interference suppression scheme for multicell multiuser massive MIMO systems to support multi modulus signals. The original proposal applies the channel state information (CSI) aided blind adaptive array (BAA) interference suppression after the beamspace preprocessing and the decision feedback channel estimation (DFCE). BAA is based on the constant modulus algorithm (CMA) which can fully exploit the degree of freedom (DoF) of massive antenna arrays to suppress both inter-user interference (IUI) and inter-cell interference (ICI). Its effectiveness has been verified under the extensive pilot contamination constraint. Unfortunately, CMA basically works well only for constant envelope signals such as QPSK and thus the proposed scheme should be expanded to cover QAM signals for more general use. This paper proposes to apply the multi modulus algorithm (MMA) and the minimum mean square error weight derivation based on data-aided sample matrix inversion (MMSE-SMI). It can successfully realize interference suppression even with the use of multi-level envelope signals such as 16QAM with satisfactorily outage probability performance below the fifth percentile.

  • Clustering of Handwritten Mathematical Expressions for Computer-Assisted Marking

    Vu-Tran-Minh KHUONG  Khanh-Minh PHAN  Huy-Quang UNG  Cuong-Tuan NGUYEN  Masaki NAKAGAWA  

     
    PAPER-Educational Technology

      Pubricized:
    2020/11/24
      Vol:
    E104-D No:2
      Page(s):
    275-284

    Many approaches enable teachers to digitalize students' answers and mark them on the computer. However, they are still limited for supporting marking descriptive mathematical answers that can best evaluate learners' understanding. This paper presents clustering of offline handwritten mathematical expressions (HMEs) to help teachers efficiently mark answers in the form of HMEs. In this work, we investigate a method of combining feature types from low-level directional features and multiple levels of recognition: bag-of-symbols, bag-of-relations, and bag-of-positions. Moreover, we propose a marking cost function to measure the marking effort. To show the effectiveness of our method, we used two datasets and another sampled from CROHME 2016 with synthesized patterns to prepare correct answers and incorrect answers for each question. In experiments, we employed the k-means++ algorithm for each level of features and considered their combination to produce better performance. The experiments show that the best combination of all the feature types can reduce the marking cost to about 0.6 by setting the number of answer clusters appropriately compared with the manual one-by-one marking.

  • Mobility Innovation “Another CASE” Open Access

    Koji OGURI  Haruki KAWANAKA  Shintaro ONO  

     
    INVITED PAPER

      Vol:
    E104-A No:2
      Page(s):
    349-356

    The environment surrounding automotive technology is undergoing a major transformation. In particular, as technological innovation advances in new areas called “CASE” such as Connected, Autonomous/Automated, Shared, and Electric, various research activities are underway. However, this is an approach from the standpoint of the automobile centered, and when considering the development of a new automobile society, it is necessary to consider from the standpoint of “human centered,” who are users, too. Therefore, this paper proposes the possibility of technological innovation in the area of “Another CASE” such as Comfortable, Accessible, Safety, and Enjoy/Exciting, and introduces the contents of some interesting researches.

  • Tactile Touch Display Using Segmented-Electrode Array with Tactile Strength Stabilization Open Access

    Hiroshi HAGA  Takuya ASAI  Shin TAKEUCHI  Harue SASAKI  Hirotsugu YAMAMOTO  Koji SHIGEMURA  

     
    INVITED PAPER-Electronic Displays

      Pubricized:
    2020/07/22
      Vol:
    E104-C No:2
      Page(s):
    64-72

    We developed an 8.4-inch electrostatic-tactile touch display using a segmented-electrode array (30×20) as both tactile pixels and touch sensors. Each pixel can be excited independently so that the electrostatic-tactile touch display allows presenting real localized tactile textures in any shape. A driving scheme in which the tactile strength is independent of the grounding state of the human body by employing two-phased actuation was also proposed and demonstrated. Furthermore, tactile crosstalk was investigated to find it was due to the voltage fluctuation in the human body and it was diminished by applying the aforementioned driving scheme.

  • Prosodic Features Control by Symbols as Input of Sequence-to-Sequence Acoustic Modeling for Neural TTS

    Kiyoshi KURIHARA  Nobumasa SEIYAMA  Tadashi KUMANO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/11/09
      Vol:
    E104-D No:2
      Page(s):
    302-311

    This paper describes a method to control prosodic features using phonetic and prosodic symbols as input of attention-based sequence-to-sequence (seq2seq) acoustic modeling (AM) for neural text-to-speech (TTS). The method involves inserting a sequence of prosodic symbols between phonetic symbols that are then used to reproduce prosodic acoustic features, i.e. accents, pauses, accent breaks, and sentence endings, in several seq2seq AM methods. The proposed phonetic and prosodic labels have simple descriptions and a low production cost. By contrast, the labels of conventional statistical parametric speech synthesis methods are complicated, and the cost of time alignments such as aligning the boundaries of phonemes is high. The proposed method does not need the boundary positions of phonemes. We propose an automatic conversion method for conventional labels and show how to automatically reproduce pitch accents and phonemes. The results of objective and subjective evaluations show the effectiveness of our method.

  • New Construction of Even-Length Binary Z-Complementary Pairs with Low PAPR Open Access

    Zhi GU  Yong WANG  Yang YANG  

     
    LETTER-Coding Theory

      Vol:
    E104-A No:2
      Page(s):
    412-416

    This paper is focused on constructing even-length binary Z-complementary pairs (EB-ZCPs) with new length. Inspired by a recent work of Adhikary et al., we give a construction of EB-ZCPs with length 8N+4 (where N=2α 10β 26γ and α, β, γ are nonnegative integers) and zero correlation zone (ZCZ) width 5N+2. The maximum aperiodic autocorrelation sums (AACS) magnitude of the proposed sequences outside the ZCZ region is 8. It turns out that the generated sequences have low PAPR.

  • Effectiveness and Limitation of Blockchain in Distributed Optimization: Applications to Energy Management Systems Open Access

    Daiki OGAWA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    INVITED PAPER

      Vol:
    E104-A No:2
      Page(s):
    423-429

    A blockchain, which is well known as one of the distributed ledgers, has attracted in many research fields. In this paper, we discuss the effectiveness and limitation of a blockchain in distributed optimization. In distributed optimization, the original problem is decomposed, and the local problems are solved by multiple agents. In this paper, ADMM (Alternating Direction Method of Multipliers) is utilized as one of the powerful methods in distributed optimization. In ADMM, an aggregator is basically required for collecting the computation result in each agent. Using blockchains, the function of an aggregator can be contained in a distributed ledger, and an aggregator may not be required. As a result, tampering from attackers can be prevented. As an application, we consider energy management systems (EMSs). By numerical experiments, the effectiveness and limitation of blockchain-based distributed optimization are clarified.

1241-1260hit(18690hit)