The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

1441-1460hit(18690hit)

  • Algorithm-Hardware Co-Design of Real-Time Edge Detection for Deep-Space Autonomous Optical Navigation

    Hao XIAO  Yanming FAN  Fen GE  Zhang ZHANG  Xin CHENG  

     
    PAPER

      Pubricized:
    2020/06/15
      Vol:
    E103-D No:10
      Page(s):
    2047-2058

    Optical navigation (OPNAV) is the use of the on-board imaging data to provide a direct measurement of the image coordinates of the target as navigation information. Among the optical observables in deep-space, the edge of the celestial body is an important feature that can be utilized for locating the planet centroid. However, traditional edge detection algorithms like Canny algorithm cannot be applied directly for OPNAV due to the noise edges caused by surface markings. Moreover, due to the constrained computation and energy capacity on-board, light-weight image-processing algorithms with less computational complexity are desirable for real-time processing. Thus, to fast and accurately extract the edge of the celestial body from high-resolution satellite imageries, this paper presents an algorithm-hardware co-design of real-time edge detection for OPNAV. First, a light-weight edge detection algorithm is proposed to efficiently detect the edge of the celestial body while suppressing the noise edges caused by surface markings. Then, we further present an FPGA implementation of the proposed algorithm with an optimized real-time performance and resource efficiency. Experimental results show that, compared with the traditional edge detection algorithms, our proposed one enables more accurate celestial body edge detection, while simplifying the hardware implementation.

  • Design of a 45 Gb/s, 98 fJ/bit, 0.02 mm2 Transimpedance Amplifier with Peaking-Dedicated Inductor in 65-nm CMOS

    Akira TSUCHIYA  Akitaka HIRATSUKA  Kenji TANAKA  Hiroyuki FUKUYAMA  Naoki MIURA  Hideyuki NOSAKA  Hidetoshi ONODERA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2020/04/09
      Vol:
    E103-C No:10
      Page(s):
    489-496

    This paper presents a design of CMOS transimpedance amplifier (TIA) and peaking inductor for high speed, low power and small area. To realize high density integration of optical I/O, area reduction is an important figure as well as bandwidth, power and so on. To determine design parameters of multi-stage inverter-type TIA (INV-TIA) with peaking inductors, we derive a simplified model of the bandwidth and the energy per bit. Multi-layered on-chip inductors are designed for area-effective inductive peaking. A 5-stage INV-TIA with 3 peaking inductors is fabricated in a 65-nm CMOS. By using multi-layered inductors, 0.02 mm2 area is achieved. Measurement results show 45 Gb/s operation with 49 dBΩ transimpedance gain and 4.4 mW power consumption. The TIA achieves 98 fJ/bit energy efficiency.

  • Codeword Set Selection for the Error-Correcting 4b/10b Line Code with Maximum Clique Enumeration Open Access

    Masayuki TAKEDA  Nobuyuki YAMASAKI  

     
    PAPER-communication

      Vol:
    E103-A No:10
      Page(s):
    1227-1233

    This paper addresses the problem of finding, evaluating, and selecting the best set of codewords for the 4b/10b line code, a dependable line code with forward error correction (FEC) designed for real-time communication. Based on the results of our scheme [1], we formulate codeword search as an instance of the maximum clique problem, and enumerate all candidate codeword sets via maximum clique enumeration as proposed by Eblen et al. [2]. We then measure each set in terms of resistance to bit errors caused by noise and present a canonical set of codewords for the 4b/10b line code. Additionally, we show that maximum clique enumeration is #P-hard.

  • Horn and Lens Antenna with Low Height and Low Antenna Coupling for Compact Automotive 77-GHz Long-Range Radar

    Akira KURIYAMA  Hideyuki NAGAISHI  Hiroshi KURODA  Akira KITAYAMA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/04/08
      Vol:
    E103-C No:10
      Page(s):
    426-433

    Smaller antenna structures for long-range radar transmitters and receivers operating in the 77-GHz band for automotive application have been achieved by using antennas with a horn, lens, and microstrip antenna. The transmitter (Tx) antenna height was reduced while keeping the antenna gain high and the antenna substrate small by developing an antenna structure composed of two differential horn and lens antennas in which the diameter and focus distance of the lenses were half those in the previous design. The microstrip antennas are directly connected to the differential outputs of a monolithic microwave integrated circuit. A Tx antenna fabricated using commercially available materials was 14mm high and had an output-aperture of 18×44mm. It achieved an antenna gain of 23.5dBi. The antenna substrate must be at least 96mm2. The antenna had a flat beam with half-power elevation and azimuth beamwidths of 4.5° and 21°, respectively. A receiver (Rx) antenna array composed of four sets of horn and lens antennas with an output-aperture of 9×22mm and a two-by-two array configuration was fabricated for application in a newly proposed small front-end module with azimuth direction of arrival (DOA) estimation. The Rx antenna array had an antenna coupling of less than -31dB in the 77-GHz band, which is small enough for DOA estimation by frequency-modulated continuous wave radar receivers even though the four antennas are arranged without any separation between their output-apertures.

  • A New Decomposition Method of LC-Ladder Matching Circuits with Negative Components

    Satoshi TANAKA  

     
    PAPER

      Vol:
    E103-A No:9
      Page(s):
    1011-1017

    Matching circuits using LC elements are widely applied to high-frequency circuits such as power amplifier (PA) and low-noise amplifier (LNA). For determining matching condition of multi-stage matching circuits, this paper shows that any multi-stage LC-Ladder matching circuit with resistive termination can be decomposed to the extended L-type matching circuits with resistive termination containing negative elements where the analytical solution exists. The matching conditions of each extended L-type matching circuit are obtained easily from the termination resistances and the design frequency. By synthesizing these simple analysis solutions, it is possible to systematically determine the solution even in a large number of stages (high order) matching circuits.

  • Node Density Loss Resilient Report Generation Method for the Statistical Filtering Based Sensor Networks

    Jin Myoung KIM  Hae Young LEE  

     
    LETTER-Information Network

      Pubricized:
    2020/05/29
      Vol:
    E103-D No:9
      Page(s):
    2007-2010

    In the statistic en-route filtering, each report generation node must collect a certain number of endorsements from its neighboring nodes. However, at some point, a node may fail to collect an insufficient number of endorsements since some of its neighboring nodes may have dead batteries. This letter presents a report generation method that can enhance the generation process of sensing reports under such a situation. Simulation results show the effectiveness of the proposed method.

  • Development of Artificial Neural Network Based Automatic Stride Length Estimation Method Using IMU: Validation Test with Healthy Subjects

    Yoshitaka NOZAKI  Takashi WATANABE  

     
    LETTER-Biological Engineering

      Pubricized:
    2020/06/10
      Vol:
    E103-D No:9
      Page(s):
    2027-2031

    Rehabilitation and evaluation of motor function are important for motor disabled patients. In stride length estimation using an IMU attached to the foot, it is necessary to detect the time of the movement state, in which acceleration should be integrated. In our previous study, acceleration thresholds were used to determine the integration section, so it was necessary to adjust the threshold values for each subject. The purpose of this study was to develop a method for estimating stride length automatically using an artificial neural network (ANN). In this paper, a 4-layer ANN with feature extraction layers trained by autoencoder was tested. In addition, the methods of searching for the local minimum of acceleration or ANN output after detecting the movement state section by ANN were examined. The proposed method estimated the stride length for healthy subjects with error of -1.88 ± 2.36%, which was almost the same as the previous threshold based method (-0.97 ± 2.68%). The correlation coefficients between the estimated stride length and the reference value were 0.981 and 0.976 for the proposed and previous methods, respectively. The error ranges excluding outliers were between -7.03% and 3.23%, between -7.13% and 5.09% for the proposed and previous methods, respectively. The proposed method would be effective because the error range was smaller than the conventional method and no threshold adjustment was required.

  • Optimal Power Allocation for Green CR over Fading Channels with Rate Constraint

    Cong WANG  Tiecheng SONG  Jun WU  Wei JIANG  Jing HU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/03/16
      Vol:
    E103-B No:9
      Page(s):
    1038-1048

    Green cognitive radio (CR) plays an important role in offering secondary users (SUs) with more spectrum with smaller energy expenditure. However, the energy efficiency (EE) issues associated with green CR for fading channels have not been fully studied. In this paper, we investigate the average EE maximization problem for spectrum-sharing CR in fading channels. Unlike previous studies that considered either the peak or the average transmission power constraints, herein, we considered both of these constraints. Our aim is to maximize the average EE of SU by optimizing the transmission power under the joint peak and average transmit power constraints, the rate constraint of SU and the quality of service (QoS) constraint of primary user (PU). Specifically, the QoS for PU is guaranteed based on either the average interference power constraint or the PU outage constraint. To address the non-convex optimization problem, an iterative optimal power allocation algorithm that can tackle the problem efficiently is proposed. The optimal transmission powers are identified under both of perfect and imperfect channel side information (CSI). Simulations show that our proposed scheme can achieve higher EE over the existing scheme and the EE achieved under perfect CSI is better than that under imperfect CSI.

  • Improvement on Uneven Heating in Microwave Oven by Diodes-Loaded Planar Electromagnetic Field Stirrer

    Ryosuke SUGA  Naruki SAITO  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/03/30
      Vol:
    E103-C No:9
      Page(s):
    388-395

    A planar electromagnetic field stirrer with periodically arranged metal patterns and diode switches is proposed for improving uneven heating of a heated object placed in a microwave oven. The reflection phase of the proposed stirrer changes by switching the states of diodes mounted on the stirrer and the electromagnetic field in the microwave oven is stirred. The temperature distribution of a heated object located in a microwave oven was simulated and measured using the stirrer in order to evaluate the improving effect of the uneven heating. As the result, the heated parts of the objects were changed with the diode states and the improving effect of the uneven heating was experimentally indicated.

  • A Highly Reliable Compilation Optimization Passes Sequence Generation Framework

    Jiang WU  Jianjun XU  Xiankai MENG  Yan LEI  

     
    LETTER-Software System

      Pubricized:
    2020/06/22
      Vol:
    E103-D No:9
      Page(s):
    1998-2002

    We propose a new framework named ROICF based on reinforcement learning orienting reliable compilation optimization sequence generation. On the foundation of the LLVM standard compilation optimization passes, we can obtain specific effective phase ordering for different programs to improve program reliability.

  • Energy-Efficient Secure Transmission for Cognitive Radio Networks with SWIPT

    Ke WANG  Wei HENG  Xiang LI  Jing WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/03
      Vol:
    E103-B No:9
      Page(s):
    1002-1010

    In this paper, the artificial noise (AN)-aided multiple-input single-output (MISO) cognitive radio network with simultaneous wireless information and power transfer (SWIPT) is considered, in which the cognitive user adopts the power-splitting (PS) receiver architecture to simultaneously decode information and harvest energy. To support secure communication and facilitate energy harvesting, AN is transmitted with information signal at cognitive base station (CBS). The secrecy energy efficiency (SEE) maximization problem is formulated with the constraints of secrecy rate and harvested energy requirements as well as primary user's interference requirements. However, this challenging problem is non-convex due to the fractional objective function and the coupling between the optimization variables. For tackling the challenging problem, a double-layer iterative optimization algorithm is developed. Specifically, the outer layer invokes a one-dimension search algorithm for the newly introduced tight relaxation variable, while the inner one leverages the Dinkelbach method to make the fractional optimization problem more tractable. Furthermore, closed-form expressions for the power of information signal and AN are obtained. Numerical simulations are conducted to demonstrate the efficiency of our proposed algorithm and the advantages of AN in enhancing the SEE performance.

  • Fresh Tea Shoot Maturity Estimation via Multispectral Imaging and Deep Label Distribution Learning

    Bin CHEN  JiLi YAN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2020/06/01
      Vol:
    E103-D No:9
      Page(s):
    2019-2022

    Fresh Tea Shoot Maturity Estimation (FTSME) is the basement of automatic tea picking technique, determines whether the shoot can be picked. Unfortunately, the ambiguous information among single labels and uncontrollable imaging condition lead to a low FTSME accuracy. A novel Fresh Tea Shoot Maturity Estimating method via multispectral imaging and Deep Label Distribution Learning (FTSME-DLDL) is proposed to overcome these issues. The input is 25-band images, and the output is the corresponding tea shoot maturity label distribution. We utilize the multiple VGG-16 and auto-encoding network to obtain the multispectral features, and learn the label distribution by minimizing the Kullback-Leibler divergence using deep convolutional neural networks. The experimental results show that the proposed method has a better performance on FTSME than the state-of-the-art methods.

  • Joint Adversarial Training of Speech Recognition and Synthesis Models for Many-to-One Voice Conversion Using Phonetic Posteriorgrams

    Yuki SAITO  Kei AKUZAWA  Kentaro TACHIBANA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2020/06/12
      Vol:
    E103-D No:9
      Page(s):
    1978-1987

    This paper presents a method for many-to-one voice conversion using phonetic posteriorgrams (PPGs) based on an adversarial training of deep neural networks (DNNs). A conventional method for many-to-one VC can learn a mapping function from input acoustic features to target acoustic features through separately trained DNN-based speech recognition and synthesis models. However, 1) the differences among speakers observed in PPGs and 2) an over-smoothing effect of generated acoustic features degrade the converted speech quality. Our method performs a domain-adversarial training of the recognition model for reducing the PPG differences. In addition, it incorporates a generative adversarial network into the training of the synthesis model for alleviating the over-smoothing effect. Unlike the conventional method, ours jointly trains the recognition and synthesis models so that they are optimized for many-to-one VC. Experimental evaluation demonstrates that the proposed method significantly improves the converted speech quality compared with conventional VC methods.

  • Using the Rotation Matrix to Eliminate the Unitary Ambiguity in the Blind Estimation of Short-Code DSSS Signal Pseudo-Code

    Kejun LI  Yong GAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/03
      Vol:
    E103-B No:9
      Page(s):
    979-988

    For the blind estimation of short-code direct sequence spread spectrum (DSSS) signal pseudo-noise (PN) sequences, the eigenvalue decomposition (EVD) algorithm, the singular value decomposition (SVD) algorithm and the double-periodic projection approximation subspace tracking with deflation (DPASTd) algorithm are often used to estimate the PN sequence. However, when the asynchronous time delay is unknown, the largest eigenvalue and the second largest eigenvalue may be very close, resulting in the estimated largest eigenvector being any non-zero linear combination of the really required largest eigenvector and the really required second largest eigenvector. In other words, the estimated largest eigenvector exhibits unitary ambiguity. This degrades the performance of any algorithm estimating the PN sequence from the estimated largest eigenvector. To tackle this problem, this paper proposes a spreading sequence blind estimation algorithm based on the rotation matrix. First of all, the received signal is divided into two-information-period-length temporal vectors overlapped by one-information-period. The SVD or DPASTd algorithm can then be applied to obtain the largest eigenvector and the second largest eigenvector. The matrix composed of the largest eigenvector and the second largest eigenvector can be rotated by the rotation matrix to eliminate any unitary ambiguity. In this way, the best estimation of the PN sequence can be obtained. Simulation results show that the proposed algorithm not only solves the problem of estimating the PN sequence when the largest eigenvalue and the second largest eigenvalue are close, but also performs well at low signal-to-noise ratio (SNR) values.

  • Neural Networks Probability-Based PWL Sigmoid Function Approximation

    Vantruong NGUYEN  Jueping CAI  Linyu WEI  Jie CHU  

     
    LETTER-Biocybernetics, Neurocomputing

      Pubricized:
    2020/06/11
      Vol:
    E103-D No:9
      Page(s):
    2023-2026

    In this letter, a piecewise linear (PWL) sigmoid function approximation based on the statistical distribution probability of the neurons' values in each layer is proposed to improve the network recognition accuracy with only addition circuit. The sigmoid function is first divided into three fixed regions, and then according to the neurons' values distribution probability, the curve in each region is segmented into sub-regions to reduce the approximation error and improve the recognition accuracy. Experiments performed on Xilinx's FPGA-XC7A200T for MNIST and CIFAR-10 datasets show that the proposed method achieves 97.45% recognition accuracy in DNN, 98.42% in CNN on MNIST and 72.22% on CIFAR-10, up to 0.84%, 0.57% and 2.01% higher than other approximation methods with only addition circuit.

  • Top-N Recommendation Using Low-Rank Matrix Completion and Spectral Clustering

    Qian WANG  Qingmei ZHOU  Wei ZHAO  Xuangou WU  Xun SHAO  

     
    PAPER-Internet

      Pubricized:
    2020/03/16
      Vol:
    E103-B No:9
      Page(s):
    951-959

    In the age of big data, recommendation systems provide users with fast access to interesting information, resulting to a significant commercial value. However, the extreme sparseness of user assessment data is one of the key factors that lead to the poor performance of recommendation algorithms. To address this problem, we propose a spectral clustering recommendation scheme with low-rank matrix completion and spectral clustering. Our scheme exploits spectral clustering to achieve the division of a similar user group. Meanwhile, the low-rank matrix completion is used to effectively predict un-rated items in the sub-matrix of the spectral clustering. With the real dataset experiment, the results show that our proposed scheme can effectively improve the prediction accuracy of un-rated items.

  • Design of Physical Layer Key Generation Encryption Method Using ACO-OFDM in VLC Networks

    Yahya AL-MOLIKI  Mohammed ALRESHEEDI  Yahya AL-HARTHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/11
      Vol:
    E103-B No:9
      Page(s):
    969-978

    Security in visible-light communication (VLC) has seen increasing importance in recent years. Asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) is recognized as one of the most powerful and efficient OFDM techniques. Therefore, it is well suited for use in both uplink and downlink connections. A security protocol based on this technique can facilitate secure uplink and downlink connections. In the present study, a low-complexity physical-layer key-generation encryption method is designed using the ACO-OFDM technique for indoor VLC networks. The security method is contingent on the generation of secret keys from the cyclic prefix OFDM samples positioned in the low-channel impact area to encrypt all signal frames before transmission, throughout the session. Numerical results indicate that the key-generation mechanism should be implemented during downlink data transmission throughout a session period to provide keys for both downlink and uplink connections. In this setup, the handset of the user employs the secret keys generated during downlink data transmission to encrypt its uplink transmission. This setup conserves the battery life of the handset. Additionally, the results indicate that the proposed security method can achieve a zero key mismatch rate with on-the-fly key creation.

  • Chaos-Chaos Intermittency Synchronization Induced by Feedback Signals and Stochastic Noise in Coupled Chaotic Systems Open Access

    Sou NOBUKAWA  Nobuhiko WAGATSUMA  Haruhiko NISHIMURA  

     
    PAPER-Nonlinear Problems

      Vol:
    E103-A No:9
      Page(s):
    1086-1094

    Various types of synchronization phenomena have been reported in coupled chaotic systems. In recent years, the applications of these phenomena have been advancing for utilization in sensor network systems, secure communication systems, and biomedical systems. Specifically, chaos-chaos intermittency (CCI) synchronization is a characterized synchronization phenomenon. Previously, we proposed a new chaos control method, termed as the “reduced region of orbit (RRO) method,” to achieve CCI synchronization using external feedback signals. This method has been gathering research attention because of its ability to induce CCI synchronization; this can be achieved even if internal system parameters cannot be adjusted by external factors. Further, additive stochastic noise is known to have a similar effect. The objective of this study was to compare the performance of the RRO method and the method that applies stochastic noise, both of which are capable of inducing CCI synchronization. The results showed that even though CCI synchronization can be realized using both control methods under the induced attractor merging condition, the RRO method possesses higher adoptability and accomplishes a higher degree of CCI synchronization compared to additive stochastic noise. This advantage might facilitate the application of synchronization in coupled chaotic systems.

  • Effect of Complex Permeability on Circuit Parameters of CPW with Magnetic Noise Suppression Sheet

    Sho MUROGA  Motoshi TANAKA  Takefumi YOSHIKAWA  Yasushi ENDO  

     
    PAPER

      Pubricized:
    2020/04/08
      Vol:
    E103-B No:9
      Page(s):
    899-902

    An effect of complex permeability of noise suppression sheets (NSS) on circuit parameters was investigated by a magnetic circuit analysis using cross-sectional size and material parameters. The series resistance and inductance of the coplanar waveguide (CPW) with a NSS considering the effect of the complex permeability of the NSS were quantitatively estimated. The result indicated that the imaginary and real part of the effective permeability affected the resistance and inductance, respectively. Furthermore, this analysis was applied to an 8-µm-wide CPW with a 0.5-µm-thick Co85Zr3Nb12 film for quantitative estimation of the resistance, the inductance and the characteristic impedance. The estimated parameters were almost similar to the measured values. These results showed that the frequency characteristics of the circuit parameters could be controlled by changing size and material parameters.

  • Complexity-Reduced Adaptive PAPR Reduction Method Using Null Space in MIMO Channel for MIMO-OFDM Signals Open Access

    Taku SUZUKI  Mikihito SUZUKI  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/03/23
      Vol:
    E103-B No:9
      Page(s):
    1019-1029

    This paper proposes a computational complexity-reduced algorithm for an adaptive peak-to-average power ratio (PAPR) reduction method previously developed by members of our research group that uses the null space in a multiple-input multiple-output (MIMO) channel for MIMO-orthogonal frequency division multiplexing (OFDM) signals. The proposed algorithm is an extension of the peak cancellation (PC) signal-based method that has been mainly investigated for per-antenna PAPR reduction. This method adds the PC signal, which is designed so that the out-of-band radiation is removed/reduced, directly to the time-domain transmission signal at each antenna. The proposed method, referred to as PCCNC (PC with channel-null constraint), performs vector-level signal processing in the PC signal generation so that the PC signal is transmitted only to the null space in the MIMO channel. We investigate three methods to control the beamforming (BF) vector in the PC signal, which is a key factor in determining the achievable PAPR performance of the algorithm. Computer simulation results show that the proposed PCCNC achieves approximately the same throughput-vs.-PAPR performance as the previous method while dramatically reducing the required computational cost.

1441-1460hit(18690hit)