The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2201-2220hit(20498hit)

  • Direct Log-Density Gradient Estimation with Gaussian Mixture Models and Its Application to Clustering

    Qi ZHANG  Hiroaki SASAKI  Kazushi IKEDA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/03/22
      Vol:
    E102-D No:6
      Page(s):
    1154-1162

    Estimation of the gradient of the logarithm of a probability density function is a versatile tool in statistical data analysis. A recent method for model-seeking clustering called the least-squares log-density gradient clustering (LSLDGC) [Sasaki et al., 2014] employs a sophisticated gradient estimator, which directly estimates the log-density gradients without going through density estimation. However, the typical implementation of LSLDGC is based on a spherical Gaussian function, which may not work well when the probability density function for data has highly correlated local structures. To cope with this problem, we propose a new gradient estimator for log-density gradients with Gaussian mixture models (GMMs). Covariance matrices in GMMs enable the new estimator to capture the highly correlated structures. Through the application of the new gradient estimator to mode-seeking clustering and hierarchical clustering, we experimentally demonstrate the usefulness of our clustering methods over existing methods.

  • The Effect of Kr/O2 Sputtering on the Ferroelectric Properties of SrBi2Ta2O9 Thin Film Formation

    Binjian ZENG  Jiajia LIAO  Qiangxiang PENG  Min LIAO  Yichun ZHOU  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E102-C No:6
      Page(s):
    441-446

    For the further scaling and lower voltage applications of nonvolatile ferroelectric memory, the effect of Kr/O2 sputtering for SrBi2Ta2O9 (SBT) thin film formation was investigated utilizing a SrBi2Ta2O9 target. The 80-nm-thick SBT films were deposited by radio-frequency (RF) magnetron sputtering on Pt/Ti/SiO2/Si(100). Compared with Ar/O2 sputtering, the ferroelectric properties such as larger remnant polarization (Pr) of 3.2 μC/cm2 were observed with decrease of leakage current in case of Kr/O2 sputtering. X-ray diffraction (XRD) patterns indicated that improvement of the crystallinity with suppressing pyrochlore phases and enhancing ferroelectric phases was realized by Kr/O2 sputtering.

  • Millimeter-Wave Scattering and Transmission of Misaligned Dual Metallic Grating Screens

    Hyun Ho PARK  Seungyoung AHN  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/12/03
      Vol:
    E102-B No:6
      Page(s):
    1180-1187

    This paper presents a rigorous analysis of the electromagnetic scattering and transmission of misaligned dual metallic grating screens. The Fourier transform and the mode-matching technique are employed to obtain an analytical solution. Numerical results show that misaligned dual metal grating screens exhibit asymmetric scattering and transmission properties with respect to the scattering and transmission angles. Parametric studies are conducted in terms of the lateral displacement and vertical distance between the dual metallic grating screens. For validation, the proposed method is compared with a numerical simulation and good agreement has been achieved.

  • Medical Healthcare Network Platform and Big Data Analysis Based on Integrated ICT and Data Science with Regulatory Science Open Access

    Ryuji KOHNO  Takumi KOBAYASHI  Chika SUGIMOTO  Yukihiro KINJO  Matti HÄMÄLÄINEN  Jari IINATTI  

     
    INVITED PAPER

      Pubricized:
    2018/12/19
      Vol:
    E102-B No:6
      Page(s):
    1078-1087

    This paper provides perspectives for future medical healthcare social services and businesses that integrate advanced information and communication technology (ICT) and data science. First, we propose a universal medical healthcare platform that consists of wireless body area network (BAN), cloud network and edge computer, big data mining server and repository with machine learning. Technical aspects of the platform are discussed, including the requirements of reliability, safety and security, i.e., so-called dependability. In addition, novel technologies for satisfying the requirements are introduced. Then primary uses of the platform for personalized medicine and regulatory compliance, and its secondary uses for commercial business and sustainable operation are discussed. We are aiming at operate the universal medical healthcare platform, which is based on the principle of regulatory science, regionally and globally. In this paper, trials carried out in Kanagawa, Japan and Oulu, Finland will be revealed to illustrate a future medical healthcare social infrastructure by expanding it to Asia-Pacific, Europe and the rest of the world. We are representing the activities of Kanagawa medical device regulatory science center and a joint proposal on security in the dependable medical healthcare platform. Novel schemes of ubiquitous rehabilitation based on analyses of the training effect by remote monitoring of activities and machine learning of patient's electrocardiography (ECG) with a neural network are proposed and briefly investigated.

  • Dependable Wireless Feedback Loop Control Schemes Considering Errors and Delay in Sensing Data and Control Command Packets

    Satoshi SEIMIYA  Takumi KOBAYASHI  Ryuji KOHNO  

     
    PAPER

      Pubricized:
    2018/12/19
      Vol:
    E102-B No:6
      Page(s):
    1113-1120

    In this study, under the assumption that a robot (1) has a remotely controllable yawing camera and (2) moves in a uniform linear motion, we propose and investigate how to improve the target recognition rate with the camera, by using wireless feedback loop control. We derive the allowable data rate theoretically, and, from the viewpoint of error and delay control, we propose and evaluate QoS-Hybrid ARQ schemes under data rate constraints. Specifically, the theoretical analyses derive the maximum data rate for sensing and control based on the channel capacity is derived with the Shannon-Hartley theorem and the path-loss channel model inside the human body, i.e. CM2 in IEEE 802.15.6 standard. Then, the adaptive error and delay control schemes, i.e. QoS-HARQ, are proposed considering the two constraints: the maximum data rate and the velocity of the camera's movement. For the performance evaluations, with the 3D robot simulator GAZEBO, we evaluated our proposed schemes in the two scenarios: the static environment and the dynamic environment. The results yield insights into how to improve the recognition rate considerably in each situation.

  • Concurrent Transmission Scheduling for Perceptual Data Sharing in mmWave Vehicular Networks

    Akihito TAYA  Takayuki NISHIO  Masahiro MORIKURA  Koji YAMAMOTO  

     
    PAPER

      Pubricized:
    2019/02/27
      Vol:
    E102-D No:5
      Page(s):
    952-962

    Sharing perceptual data (e.g., camera and LiDAR data) with other vehicles enhances the traffic safety of autonomous vehicles because it helps vehicles locate other vehicles and pedestrians in their blind spots. Such safety applications require high throughput and short delay, which cannot be achieved by conventional microwave vehicular communication systems. Therefore, millimeter-wave (mmWave) communications are considered to be a key technology for sharing perceptual data because of their wide bandwidth. One of the challenges of data sharing in mmWave communications is broadcasting because narrow-beam directional antennas are used to obtain high gain. Because many vehicles should share their perceptual data to others within a short time frame in order to enlarge the areas that can be perceived based on shared perceptual data, an efficient scheduling for concurrent transmission that improves spatial reuse is required for perceptual data sharing. This paper proposes a data sharing algorithm that employs a graph-based concurrent transmission scheduling. The proposed algorithm realizes concurrent transmission to improve spatial reuse by designing a rule that is utilized to determine if the two pairs of transmitters and receivers interfere with each other by considering the radio propagation characteristics of narrow-beam antennas. A prioritization method that considers the geographical information in perceptual data is also designed to enlarge perceivable areas in situations where data sharing time is limited and not all data can be shared. Simulation results demonstrate that the proposed algorithm doubles the area of the cooperatively perceivable region compared with a conventional algorithm that does not consider mmWave communications because the proposed algorithm achieves high-throughput transmission by improving spatial reuse. The prioritization also enlarges the perceivable region by a maximum of 20%.

  • An Enhanced Affinity Graph for Image Segmentation

    Guodong SUN  Kai LIN  Junhao WANG  Yang ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:5
      Page(s):
    1073-1080

    This paper proposes an enhanced affinity graph (EA-graph) for image segmentation. Firstly, the original image is over-segmented to obtain several sets of superpixels with different scales, and the color and texture features of the superpixels are extracted. Then, the similarity relationship between neighborhood superpixels is used to construct the local affinity graph. Meanwhile, the global affinity graph is obtained by sparse reconstruction among all superpixels. The local affinity graph and global affinity graph are superimposed to obtain an enhanced affinity graph for eliminating the influences of noise and isolated regions in the image. Finally, a bipartite graph is introduced to express the affiliation between pixels and superpixels, and segmentation is performed using a spectral clustering algorithm. Experimental results on the Berkeley segmentation database demonstrate that our method achieves significantly better performance compared to state-of-the-art algorithms.

  • Investigation of Time Evolution of Length of Break Arcs Occurring in a 48VDC/50-300A Resistive Circuit

    Kenshi HAMAMOTO  Junya SEKIKAWA  

     
    BRIEF PAPER-Electromechanical Devices and Components

      Vol:
    E102-C No:5
      Page(s):
    424-427

    Break arcs are generated in a 48VDC resistive circuit. Circuit current I0 when electrical contacts are closed is changed from 50A to 300A. The break arcs are observed by a high-speed camera with appropriate settings of exposure from horizontal direction. Length of the break arcs L is measured from images of the break arcs. Time evolutions of the length L and gap voltage Vg are investigated. The following results are obtained. By appropriate settings of the high-speed camera, the time evolution of the length L is obtained from just after ignition to before arc extinction. Tendency of increase of the length L is similar to that of increase of the voltage Vg for each current I0.

  • Combining 3D Convolutional Neural Networks with Transfer Learning by Supervised Pre-Training for Facial Micro-Expression Recognition

    Ruicong ZHI  Hairui XU  Ming WAN  Tingting LI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/01/29
      Vol:
    E102-D No:5
      Page(s):
    1054-1064

    Facial micro-expression is momentary and subtle facial reactions, and it is still challenging to automatically recognize facial micro-expression with high accuracy in practical applications. Extracting spatiotemporal features from facial image sequences is essential for facial micro-expression recognition. In this paper, we employed 3D Convolutional Neural Networks (3D-CNNs) for self-learning feature extraction to represent facial micro-expression effectively, since the 3D-CNNs could well extract the spatiotemporal features from facial image sequences. Moreover, transfer learning was utilized to deal with the problem of insufficient samples in the facial micro-expression database. We primarily pre-trained the 3D-CNNs on normal facial expression database Oulu-CASIA by supervised learning, then the pre-trained model was effectively transferred to the target domain, which was the facial micro-expression recognition task. The proposed method was evaluated on two available facial micro-expression datasets, i.e. CASME II and SMIC-HS. We obtained the overall accuracy of 97.6% on CASME II, and 97.4% on SMIC, which were 3.4% and 1.6% higher than the 3D-CNNs model without transfer learning, respectively. And the experimental results demonstrated that our method achieved superior performance compared to state-of-the-art methods.

  • A Generalized Construction of Codebook Asymptotically Meeting the Welch Bound

    Gang WANG  Min-Yao NIU  Jian GAO  Fang-Wei FU  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:5
      Page(s):
    732-737

    In this letter, as a generalization of Luo et al.'s constructions, a construction of codebook, which meets the Welch bound asymptotically, is proposed. The parameters of codebook presented in this paper are new in some cases.

  • AI@ntiPhish — Machine Learning Mechanisms for Cyber-Phishing Attack

    Yu-Hung CHEN  Jiann-Liang CHEN  

     
    INVITED PAPER

      Pubricized:
    2019/02/18
      Vol:
    E102-D No:5
      Page(s):
    878-887

    This study proposes a novel machine learning architecture and various learning algorithms to build-in anti-phishing services for avoiding cyber-phishing attack. For the rapid develop of information technology, hackers engage in cyber-phishing attack to steal important personal information, which draws information security concerns. The prevention of phishing website involves in various aspect, for example, user training, public awareness, fraudulent phishing, etc. However, recent phishing research has mainly focused on preventing fraudulent phishing and relied on manual identification that is inefficient for real-time detection systems. In this study, we used methods such as ANOVA, X2, and information gain to evaluate features. Then, we filtered out the unrelated features and obtained the top 28 most related features as the features to use for the training and evaluation of traditional machine learning algorithms, such as Support Vector Machine (SVM) with linear or rbf kernels, Logistic Regression (LR), Decision tree, and K-Nearest Neighbor (KNN). This research also evaluated the above algorithms with the ensemble learning concept by combining multiple classifiers, such as Adaboost, bagging, and voting. Finally, the eXtreme Gradient Boosting (XGBoost) model exhibited the best performance of 99.2%, among the algorithms considered in this study.

  • Generation Efficiency of Fiber Four-Wave Mixing for Phase-Shift Keying Signal Light

    Kyo INOUE  Koji IGARASHI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/11/13
      Vol:
    E102-B No:5
      Page(s):
    1005-1009

    The efficiency of generating four-wave mixing (FWM) from phase-modulated (PM) optical signal is studied. An analysis, that takes bit shifts occurring during fiber propagation due to group velocity differences into account, indicates that the FWM efficiency from PM signals is smaller than that from continuous waves in fiber transmission lines whose distance is longer than the walk-off length between transmitted optical signals.

  • RNA: An Accurate Residual Network Accelerator for Quantized and Reconstructed Deep Neural Networks

    Cheng LUO  Wei CAO  Lingli WANG  Philip H. W. LEONG  

     
    PAPER-Applications

      Pubricized:
    2019/02/19
      Vol:
    E102-D No:5
      Page(s):
    1037-1045

    With the continuous refinement of Deep Neural Networks (DNNs), a series of deep and complex networks such as Residual Networks (ResNets) show impressive prediction accuracy in image classification tasks. Unfortunately, the structural complexity and computational cost of residual networks make hardware implementation difficult. In this paper, we present the quantized and reconstructed deep neural network (QR-DNN) technique, which first inserts batch normalization (BN) layers in the network during training, and later removes them to facilitate efficient hardware implementation. Moreover, an accurate and efficient residual network accelerator (RNA) is presented based on QR-DNN with batch-normalization-free structures and weights represented in a logarithmic number system. RNA employs a systolic array architecture to perform shift-and-accumulate operations instead of multiplication operations. QR-DNN is shown to achieve a 1∼2% improvement in accuracy over existing techniques, and RNA over previous best fixed-point accelerators. An FPGA implementation on a Xilinx Zynq XC7Z045 device achieves 804.03 GOPS, 104.15 FPS and 91.41% top-5 accuracy for the ResNet-50 benchmark, and state-of-the-art results are also reported for AlexNet and VGG.

  • An Optimized Low-Power Optical Memory Access Network for Kilocore Systems

    Tao LIU  Huaxi GU  Yue WANG  Wei ZOU  

     
    LETTER-Computer System

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:5
      Page(s):
    1085-1088

    An optimized low-power optical memory access network is proposed to alleviate the cost of microring resonators (MRs) in kilocore systems, such as the pass-by loss and integration difficulty. Compared with traditional electronic bus interconnect, the proposed network reduces power consumption and latency by 80% to 89% and 21% to 24%. Moreover, the new network decreases the number of MRs by 90.6% without an increase in power consumption and latency when making a comparison with Optical Ring Network-on-Chip (ORNoC).

  • Optimized Power Allocation Scheme for Distributed Antenna Systems with D2D Communication

    Xingquan LI  Chunlong HE  Jihong ZHANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/11/21
      Vol:
    E102-B No:5
      Page(s):
    1061-1068

    In this paper, we investigate different power allocation optimization problems with interferences for distributed antenna systems (DAS) with and without D2D communication, respectively. The first objective problem is maximizing spectral efficiency (SE) of the DAS with D2D communication under the constraints of the minimum SE requirements of user equipment (UE) and D2D pair, maximum transmit power of each remote access unit (RAU) and maximum transmit power of D2D transmitter. We transform this non-convex objective function into a difference of convex functions (D.C.) then using the concave-convex procedure (CCCP) algorithm to solve the optimization problem. The second objective is maximizing energy efficiency (EE) of the DAS with D2D communication under the same constraints. We first exploit fractional programming theory to obtain the equivalent objective function of the second problem with subtract form, and then transform it into a D.C. problem and use CCCP algorithm to obtain the optimal power allocation. In each part, we summarize the corresponding optimal power allocation algorithms and also use similar method to obtain optimal solutions of the same optimization problems in DAS. Simulation results are provided to demonstrate the effectiveness of the designed power allocation algorithms and illustrate the SE and EE of the DAS by using D2D communication are much better than DAS without D2D communication.

  • Dynamic Strain Measurement with Bandwidth Allocation by Using Random Accessibility of BOCDR

    Osamu FURUKAWA  Hideo SHIDA  Shin-ichiro TEZUKA  Satoshi MATSUURA  Shoji ADACHI  

     
    PAPER-Sensing

      Pubricized:
    2018/11/13
      Vol:
    E102-B No:5
      Page(s):
    1069-1076

    A Brillouin optical correlation domain reflectometry (BOCDR) system, which can set measuring point to arbitrary distance that is aligned in a random order along an optical fiber (i.e., random accessibility), is proposed to measure dynamic strain and experimentally evaluated. This random-access system can allocate measurement bandwidth to measuring point by assigning the measurement times at each measuring point of the total number of strain measurements. This assigned number is not always equally but as necessary for plural objects with different natural frequencies. To verify the system, strain of two vibrating objects with different natural frequencies was measured by one optical fiber which is attached to those objects. The system allocated appropriate measurement bandwidth to each object and simultaneously measured dynamic strain corresponding to the vibrating objects.

  • A Sequential Classifiers Combination Method to Reduce False Negative for Intrusion Detection System

    Sornxayya PHETLASY  Satoshi OHZAHATA  Celimuge WU  Toshihito KATO  

     
    PAPER

      Pubricized:
    2019/02/27
      Vol:
    E102-D No:5
      Page(s):
    888-897

    Intrusion detection system (IDS) is a device or software to monitor a network system for malicious activity. In terms of detection results, there could be two types of false, namely, the false positive (FP) which incorrectly detects normal traffic as abnormal, and the false negative (FN) which incorrectly judges malicious traffic as normal. To protect the network system, we expect that FN should be minimized as low as possible. However, since there is a trade-off between FP and FN when IDS detects malicious traffic, it is difficult to reduce the both metrics simultaneously. In this paper, we propose a sequential classifiers combination method to reduce the effect of the trade-off. The single classifier suffers a high FN rate in general, therefore additional classifiers are sequentially combined in order to detect more positives (reduce more FN). Since each classifier can reduce FN and does not generate much FP in our approach, we can achieve a reduction of FN at the final output. In evaluations, we use NSL-KDD dataset, which is an updated version of KDD Cup'99 dataset. WEKA is utilized as a classification tool in experiment, and the results show that the proposed approach can reduce FN while improving the sensitivity and accuracy.

  • A Portable Load Balancer with ECMP Redundancy for Container Clusters

    Kimitoshi TAKAHASHI  Kento AIDA  Tomoya TANJO  Jingtao SUN  Kazushige SAGA  

     
    PAPER

      Pubricized:
    2019/02/27
      Vol:
    E102-D No:5
      Page(s):
    974-987

    Linux container technology and clusters of the containers are expected to make web services consisting of multiple web servers and a load balancer portable, and thus realize easy migration of web services across the different cloud providers and on-premise datacenters. This prevents service to be locked-in a single cloud provider or a single location and enables users to meet their business needs, e.g., preparing for a natural disaster. However existing container management systems lack the generic implementation to route the traffic from the internet into the web service consisting of container clusters. For example, Kubernetes, which is one of the most popular container management systems, is heavily dependent on cloud load balancers. If users use unsupported cloud providers or on-premise datacenters, it is up to users to route the traffic into their cluster while keeping the redundancy and scalability. This means that users could easily be locked-in the major cloud providers including GCP, AWS, and Azure. In this paper, we propose an architecture for a group of containerized load balancers with ECMP redundancy. We containerize Linux ipvs and exabgp, and then implement an experimental system using standard Linux boxes and open source software. We also reveal that our proposed system properly route the traffics with redundancy. Our proposed load balancers are usable even if the infrastructure does not have supported load balancers by Kubernetes and thus free users from lock-ins.

  • Load Balancing Using Load Threshold Adjustment and Incentive Mechanism in Structured P2P Systems

    Kyoungsoo BOK  Jonghyeon YOON  Jongtae LIM  Jaesoo YOO  

     
    LETTER-Information Network

      Pubricized:
    2019/02/18
      Vol:
    E102-D No:5
      Page(s):
    1093-1096

    In this paper, we propose a new dynamic load balancing scheme according to load threshold adjustment and incentives mechanism. The proposed scheme adjusts the load threshold of a node by comparing it with a mean threshold of adjacent nodes, thereby increasing the threshold evenly. We also assign the incentives and penalties to each node through a comparison of the mean threshold of all the nodes in order to increase autonomous load balancing participation.

  • Variable Regularization Affine Projection Sign Algorithm in Impulsive Noisy Environment

    Ying-Ren CHIEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:5
      Page(s):
    725-728

    Affine projection sign algorithm (APSA) is an important adaptive filtering method to combat the impulsive noisy environment. However, the performance of APSA is poor, if its regularization parameter is not well chosen. We propose a variable regularization APSA (VR-APSA) approach, which adopts a gradient-based method to recursively reduce the norm of the a priori error vector. The resulting VR-APSA leverages the time correlation of both the input signal matrix and error vector to adjust the value of the regularization parameter. Simulation results confirm that our algorithm exhibits both fast convergence and small misadjustment properties.

2201-2220hit(20498hit)