The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2381-2400hit(20498hit)

  • Probing Internal Electric Field in Organic Photoconductors by Using Electric-Field-Induced Optical Second-Harmonic Generation

    Dai TAGUCHI  Takaaki MANAKA  Mitsumasa IWAMOTO  Kazuko SAKUMA  Kaname WATARIGUCHI  Masataka KAWAHARA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    113-118

    Organic photoconductors (OPC) have been an important research and development topics for high quality electrophotography. By using electric field induced optical second harmonic generation (EFISHG) measurement, we can probe carrier processes in electrophotographic processes such as photo carrier generation, carrier separation, and carrier transportation for copier image production. We here selectively probe charge generation and accumulation in charge generation layer and charge transport layer in multilayer structure OPCs. We studied charge accumulation in OPC under illumination (wavelength 635nm) of double-layer-type OPC with structure of hole transport layer coated on charge generation layer. The result showed that light absorption efficiently produces free holes and electrons in the charge generation layer, followed by excessive hole accumulation at the CG/CT interface due to photo-conducting effect of CG layer. The short-wavelength irradiation at 405nm induced photovoltaic effect. These results demonstrated that the EFISHG measurement is useful to selectively probe carrier process in one layer of the multilayer OPC and to the discussion of carrier process for electrophotographic image productions.

  • Organic Thin Film-Assisted Copper Electroless Plating on Flat/Microstructured Silicone Substrates

    Tomoya SATO  Narendra SINGH  Roland HÖNES  Chihiro URATA  Yasutaka MATSUO  Atsushi HOZUMI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    147-150

    Copper (Cu) electroless plating was conducted on planar and microstructured polydimethylsiloxane (PDMS) substrates. In this study, organic thin films terminated with nitrogen (N)-containing groups, e.g. poly (dimethylaminoethyl methacrylate) brush (PDMAEMA), aminopropyl trimethoxysilane monolayer (APTES), and polydopamine (PDA) were used to anchor palladium (Pd) catalyst. While electroless plating was successfully promoted on all sample surfaces, PDMAEMA was found to achieve the best adhesion strength to the PDMS surfaces, compared to APTES- and PDA-covered PDMS substrates, due to covalent bonding, anchoring effects of polymer chains as well as high affinity of N atoms to Pd species. Our process was also successfully applied to the electroless plating of microstructured PDMS substrates.

  • Fabrication and Performance Evaluation of Enzyme-Type Biofuel Cell Using Electrode Modified with Two DET-Type Enzymes by Covalent Bonding

    Hiroki FUJITA  Yasushiro NISHIOKA  Satomitsu IMAI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    155-158

    The demand for enzymatic biofuel cells (EBFCs) as power sources or auxiliary power sources for small devices is expected to increase in the near future. EBFCs have advanced properties and do not require a separator, depending on the substrate specificity of the enzyme. Two direct electron transfer (DET)-type enzymes were used to modify anodes (length 5mm, width 4mm) by a chemical modification method using a condensation agent. The DET-type enzymes used in this study were pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) with glucose as a reaction substrate and fructose dehydrogenase (FDH) using fructose as a reaction substrate. Carboxyl groups were attached to multi-walled carbon nanotubes (MWCNTs) that act as catalyst carriers, activated to other functional groups, and reacted with the amino groups of the enzyme by the condensation agent to form covalent bonds. As a result, the upper limit of the concentration, considered to be the reaction limit, was raised as compared with that of EBFC modified with only one kind of enzyme for each electrode prepared by the same process. The output voltage was 0.155V, and the maximum power density was 80.08µW/cm2.

  • In situ Observation of Capturing BTB Molecules from Aqueous Solutions with Hydrophobic DNA Nano-Film

    Naoki MATSUDA  Hirotaka OKABE  Ayako OMURA  Miki NAKANO  Koji MIYAKE  Toshihiko NAGAMURA  Hideki KAWAI  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    203-206

    Hydrophobic DNA (H-DNA) nano-film was formed on a thin glass plate of 50μm thick working as a slab optical waveguide. Bromothymol blue (BTB) molecules were immobilized from aqueous solution with direct contacting to the H-DNA nano-film for 20 minutes. From changes in absorption spectra observed with slab optical wave guide (SOWG) during automated solution exchange (SE) processes for 100 times, it was found that about 95% of bromothymol blue (BTB) molecules was immobilized in the H-DNA nano-film with keeping their functionality of color change responsible to pH change in the solution.

  • Peptide Addition Effect of the Active Layer Precursor Solution Containing Poor Solvent on Photoelectrochemical Characteristics of the Thin Film Organic Photovoltaic Cells

    Hirokazu YAMANE  Shinji SHINDO  

     
    BRIEF PAPER

      Vol:
    E102-C No:2
      Page(s):
    192-195

    The thin film organic photovoltaic cells (OPVs) using organic semiconductors are inferior to oxgen-resistance and water-resistance, and the OPVs have a drawback that the photoelectric conversion efficiency (η) is low. For high efficiency of the OPVs, control of bulk heterojunction (BHJ) structure in the active layer is demanded. Therefore, it is thought that we can control the BHJ structure easily if we can bring a change in the aggregated structure and the crystallinity of the BHJ structure by introducing the third component that is different from the organic semiconductor into the activity layer. In this study, we introduced peptide consisting of phenylalanine of 2 molecules into the active layer prepared by poor solvent addition effect for the organic thin film solar cells and intended to try high efficiency of the organic thin film solar cells and examined the electrochemistry characteristic of the cells.

  • Flash Crowd Absorber for P2P Video Streaming

    Satoshi FUJITA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/10/26
      Vol:
    E102-D No:2
      Page(s):
    261-268

    This paper proposes a method to absorb flash crowd in P2P video streaming systems. The idea of the proposed method is to reduce the time before a newly arrived node becoming an uploader by explicitly constructing a group of newly arrived nodes called flash crowd absorber (FCA). FCA grows continuously while serving a video stream to the members of the group, and it is explicitly controlled so that the upload capacity of the nodes is fully utilized and it attains a nearly optimal latency of the stream during a flash crowd. A numerical comparison with a naive tree-based scheme is also given.

  • Development of Acoustic Nonverbal Information Estimation System for Unconstrained Long-Term Monitoring of Daily Office Activity

    Hitomi YOKOYAMA  Masano NAKAYAMA  Hiroaki MURATA  Kinya FUJITA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2018/11/12
      Vol:
    E102-D No:2
      Page(s):
    331-345

    Aimed at long-term monitoring of daily office conversations without recording the conversational content, a system is presented for estimating acoustic nonverbal information such as utterance duration, utterance frequency, and turn-taking. The system combines a sound localization technique based on the sound energy distribution with 16 beam-forming microphone-array modules mounted in the ceiling for reducing the influence of multiple sound reflection. Furthermore, human detection using a wide field of view camera is integrated to the system for more robust speaker estimation. The system estimates the speaker for each utterance and calculates nonverbal information based on it. An evaluation analyzing data collected over ten 12-hour workdays in an office with three assigned workers showed that the system had 72% speech segmentation detection accuracy and 86% speaker identification accuracy when utterances were correctly detected. Even with false voice detection and incorrect speaker identification and even in cases where the participants frequently made noise or where seven participants had gathered together for a discussion, the order of the amount of calculated acoustic nonverbal information uttered by the participants coincided with that based on human-coded acoustic nonverbal information. Continuous analysis of communication dynamics such as dominance and conversation participation roles through nonverbal information will reveal the dynamics of a group. The main contribution of this study is to demonstrate the feasibility of unconstrained long-term monitoring of daily office activity through acoustic nonverbal information.

  • Speaker-Phonetic I-Vector Modeling for Text-Dependent Speaker Verification with Random Digit Strings

    Shengyu YAO  Ruohua ZHOU  Pengyuan ZHANG  

     
    PAPER-Speech and Hearing

      Pubricized:
    2018/11/19
      Vol:
    E102-D No:2
      Page(s):
    346-354

    This paper proposes a speaker-phonetic i-vector modeling method for text-dependent speaker verification with random digit strings, in which enrollment and test utterances are not of the same phrase. The core of the proposed method is making use of digit alignment information in i-vector framework. By utilizing force alignment information, verification scores of the testing trials can be computed in the fixed-phrase situation, in which the compared speech segments between the enrollment and test utterances are of the same phonetic content. Specifically, utterances are segmented into digits, then a unique phonetically-constrained i-vector extractor is applied to obtain speaker and channel variability representation for every digit segment. Probabilistic linear discriminant analysis (PLDA) and s-norm are subsequently used for channel compensation and score normalization respectively. The final score is obtained by combing the digit scores, which are computed by scoring individual digit segments of the test utterance against the corresponding ones of the enrollment. Experimental results on the Part 3 of Robust Speaker Recognition (RSR2015) database demonstrate that the proposed approach significantly outperforms GMM-UBM by 52.3% and 53.5% relative in equal error rate (EER) for male and female respectively.

  • Automatic Speech Recognition System with Output-Gate Projected Gated Recurrent Unit

    Gaofeng CHENG  Pengyuan ZHANG  Ji XU  

     
    PAPER-Speech and Hearing

      Pubricized:
    2018/11/19
      Vol:
    E102-D No:2
      Page(s):
    355-363

    The long short-term memory recurrent neural network (LSTM) has achieved tremendous success for automatic speech recognition (ASR). However, the complicated gating mechanism of LSTM introduces a massive computational cost and limits the application of LSTM in some scenarios. In this paper, we describe our work on accelerating the decoding speed and improving the decoding accuracy. First, we propose an architecture, which is called Projected Gated Recurrent Unit (PGRU), for ASR tasks, and show that the PGRU can consistently outperform the standard GRU. Second, to improve the PGRU generalization, particularly on large-scale ASR tasks, we propose the Output-gate PGRU (OPGRU). In addition, the time delay neural network (TDNN) and normalization methods are found beneficial for OPGRU. In this paper, we apply the OPGRU for both the acoustic model and recurrent neural network language model (RNN-LM). Finally, we evaluate the PGRU on the total Eval2000 / RT03 test sets, and the proposed OPGRU single ASR system achieves 0.9% / 0.9% absolute (8.2% / 8.6% relative) reduction in word error rate (WER) compared to our previous best LSTM single ASR system. Furthermore, the OPGRU ASR system achieves significant speed-up on both acoustic model and language model rescoring.

  • Introduction to Electromagnetic Information Security Open Access

    Yu-ichi HAYASHI  Naofumi HOMMA  

     
    INVITED SURVEY PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/08/17
      Vol:
    E102-B No:1
      Page(s):
    40-50

    With the rising importance of information security, the necessity of implementing better security measures in the physical layer as well as the upper layers is becoming increasing apparent. Given the development of more accurate and less expensive measurement devices, high-performance computers, and larger storage devices, the threat of advanced attacks at the physical level has expanded from the military and governmental spheres to commercial products. In this paper, we review the issue of information security degradation through electromagnetic (EM)-based compromising of security measures in the physical layer (i.e., EM information security). Owing to the invisibility of EM radiation, such attacks can be serious threats. We first introduce the mechanism of information leakage through EM radiation and interference and then present possible countermeasures. Finally, we explain the latest research and standardization trends related to EM information security.

  • Perpendicular-Corporate Feed in a Four-Layer Circularly-Polarized Parallel-Plate Slot Array

    Hisanori IRIE  Takashi TOMURA  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/10
      Vol:
    E102-B No:1
      Page(s):
    137-146

    This paper presents a design for the perpendicular-corporate feed in a four-layer circularly-polarized parallel-plate slot array antenna. We place a dielectric layer with adequate permittivity in the region between the coupling-aperture and the radiating-slot layers to remove x-shaped cavity walls completely in the radiating part of a conventional planar corporate-feed waveguide slot array antenna. To address fabrication constraints, the dielectric layer consists of PTFE and air. It excites a strong standing wave in the region and so provides 2×2-element subarrays with uniform excitation. None of the slot layers are in electrical contact due to air gaps between the slot layers. The four-layer structure with apertures for circular polarization contributes to wideband design for axial ratios because of the eigenmodes in the desired band. We realize an 11.9% bandwidth for axial ratios of less than 3.0dB as confirmed by measurements in the 60GHz band. At the design frequency, the measured realized gain is 32.7dBi with an antenna efficiency of 75.5%.

  • On the Separating Redundancy of the Duals of First-Order Generalized Reed-Muller Codes

    Haiyang LIU  Yan LI  Lianrong MA  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:1
      Page(s):
    310-315

    The separating redundancy is an important property in the analysis of the error-and-erasure decoding of a linear block code. In this work, we investigate the separating redundancy of the duals of first-order generalized Reed-Muller (GRM) codes, a class of nonbinary linear block codes that have nice algebraic properties. The dual of a first-order GRM code can be specified by two positive integers m and q and denoted by R(m,q), where q is the power of a prime number and q≠2. We determine the first separating redundancy value of R(m,q) for any m and q. We also determine the second separating redundancy values of R(m,q) for any q and m=1 and 2. For m≥3, we set up a binary integer linear programming problem, the optimum of which gives a lower bound on the second separating redundancy of R(m,q).

  • Elliptic Curve Method Using Complex Multiplication Method Open Access

    Yusuke AIKAWA  Koji NUIDA  Masaaki SHIRASE  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    74-80

    In 2017, Shirase proposed a variant of Elliptic Curve Method combined with Complex Multiplication method for generating certain special kinds of elliptic curves. His algorithm can efficiently factorize a given composite integer when it has a prime factor p of the form 4p=1+Dv2 for some integer v, where -D is an auxiliary input integer called a discriminant. However, there is a disadvantage that the previous method works only for restricted cases where the class polynomial associated to -D has degree at most two. In this paper, we propose a generalization of the previous algorithm to the cases of class polynomials having arbitrary degrees, which enlarges the class of composite integers factorizable by our algorithm. We also extend the algorithm to more various cases where we have 4p=t2+Dv2 and p+1-t is a smooth integer.

  • Low-Hit-Zone Frequency-Hopping Sequence Sets with Optimal Periodic Partial Hamming Correlation Properties

    Limengnan ZHOU  Hongyu HAN  Xing LIU  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E102-A No:1
      Page(s):
    316-319

    Frequency-hopping sequence (FHS) sets with low-hit-zone (LHZ) have Hamming correlations maintained at a low level as long as the relative time delay between different sequences are limited in a zone around the origin, and thus can be well applied in quasi-synchronous (QS) frequency-hopping multiple-access (FHMA) systems to reduce the mutual interference between different users. Moreover, the periodic partial Hamming correlation (PPHC) properties of employed LHZ-FHS sets usually act as evaluation criterions for the performances of QS-FHMA systems in practice. In this letter, a new class of LHZ-FHS sets is constructed via interleaving techniques. Furthermore, these new LHZ-FHS sets also possess optimal PPHC properties and parameters not included in the related literature.

  • Passive Optical Metro Network Based on NG-PON2 System to Support Cloud Edges

    Kyota HATTORI  Masahiro NAKAGAWA  Masaru KATAYAMA  Jun-ichi KANI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/06/28
      Vol:
    E102-B No:1
      Page(s):
    88-96

    The traffic of the future metro network will dynamically change not only in volume but also in destination to support the application of virtualization technology to network edge equipment such as cloud edges to achieve cost-effectiveness. Therefore, the future metro network will have to accommodate traffic cost-effectively, even though both the traffic volume and the traffic destination will change dynamically. To handle to this trend, in this paper, we propose a future metro network architecture based on Next-Generation Passive Optical Network Stage 2 systems that offers cost-effectiveness while supporting virtual machine migration of cloud edges. The basic idea of the proposed method is sharing a burst-mode receiver between the continuous-mode transmitters and burst-mode transmitters. In this paper, we show the feasibility and effectiveness of the proposed method with experiments on prototype systems, and simulations for the preliminary evaluation of network capital expenditure.

  • Convergence Comparison on the IDR(s)-Based IPNMs for Electromagnetic Multiple Scattering Simulations

    Norimasa NAKASHIMA  Seiji FUJINO  

     
    BRIEF PAPER

      Vol:
    E102-C No:1
      Page(s):
    51-55

    This paper presents various Iterative Progressive Numerical Methods (IPNMs) for the computation of electromagnetic (EM) wave scattering from many objects. We previously modified the original IPNM from the standpoint of the classical and the IDR-based linear iterative solvers. We demonstrate the performance of the IDR(s)-based IPNMs through some numerical examples of EM wave scattering from regularly placed 27 perfectly electric conducting spheres.

  • Real-Time Sparse Visual Tracking Using Circulant Reverse Lasso Model

    Chenggang GUO  Dongyi CHEN  Zhiqi HUANG  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/10/09
      Vol:
    E102-D No:1
      Page(s):
    175-184

    Sparse representation has been successfully applied to visual tracking. Recent progresses in sparse tracking are mainly made within the particle filter framework. However, most sparse trackers need to extract complex feature representations for each particle in the limited sample space, leading to expensive computation cost and yielding inferior tracking performance. To deal with the above issues, we propose a novel sparse tracking method based on the circulant reverse lasso model. Benefiting from the properties of circulant matrices, densely sampled target candidates are implicitly generated by cyclically shifting the base feature descriptors, and then embedded into a reverse sparse reconstruction model as a dictionary to encode a robust appearance template. The alternating direction method of multipliers is employed for solving the reverse sparse model and the optimization process can be efficiently solved in the frequency domain, which enables the proposed tracker to run in real-time. The calculated sparse coefficient map represents the similarity scores between the template and circular shifted samples. Thus the target location can be directly predicted according to the coordinates of the peak coefficient. A scale-aware template updating strategy is combined with the correlation filter template learning to take into account both appearance deformations and scale variations. Both quantitative and qualitative evaluations on two challenging tracking benchmarks demonstrate that the proposed algorithm performs favorably against several state-of-the-art sparse representation based tracking methods.

  • Temporal and Spatial Analysis of Local Body Sway Movements for the Identification of People

    Takuya KAMITANI  Hiroki YOSHIMURA  Masashi NISHIYAMA  Yoshio IWAI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/10/09
      Vol:
    E102-D No:1
      Page(s):
    165-174

    We propose a method for accurately identifying people using temporal and spatial changes in local movements measured from video sequences of body sway. Existing methods identify people using gait features that mainly represent the large swinging of the limbs. The use of gait features introduces a problem in that the identification performance decreases when people stop walking and maintain an upright posture. To extract informative features, our method measures small swings of the body, referred to as body sway. We extract the power spectral density as a feature from local body sway movements by dividing the body into regions. To evaluate the identification performance using our method, we collected three original video datasets of body sway sequences. The first dataset contained a large number of participants in an upright posture. The second dataset included variation over the long term. The third dataset represented body sway in different postures. The results on the datasets confirmed that our method using local movements measured from body sway can extract informative features for identification.

  • New Distinguisher on Reduced-Round Keccak Sponge Function

    Senyang HUANG  Xiaoyun WANG  Guangwu XU  Meiqin WANG  Jingyuan ZHAO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:1
      Page(s):
    242-250

    The security analysis of Keccak, the winner of SHA-3, has attracted considerable interest. Recently, some attention has been paid to distinguishing Keccak sponge function from random permutation. In EUROCRYPT'17, Huang et al. proposed conditional cube tester to recover the key of Keccak-MAC and Keyak and to construct practical distinguishing attacks on Keccak sponge function up to 7 rounds. In this paper, we improve the conditional cube tester model by refining the formulation of cube variables. By classifying cube variables into three different types and working the candidates of these types of cube variable carefully, we are able to establish a new theoretical distinguisher on 8-round Keccak sponge function. Our result is more efficient and greatly improves the existing results. Finally we remark that our distinguishing attack on the the reduced-round Keccak will not threat the security margin of the Keccak sponge function.

  • On-Demand Generalization of Road Networks Based on Facility Search Results

    Daisuke YAMAMOTO  Masaki MURASE  Naohisa TAKAHASHI  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2018/10/16
      Vol:
    E102-D No:1
      Page(s):
    93-103

    Road generalization is a method for thinning out road networks to allow easy viewing according to the size of the map. Most conventional road generalization methods mainly focus on the length of a stroke, which is a chain of links with good continuity based on the principle of perceptual grouping applied to network data such as roads and rivers. However, in the case of facility search in a web map service, for example, a “restaurant guide map,” a road generalization mechanism can be more effective if it depends not only on the stroke length but also on the facility search results. Accordingly, in this study, we implement an on-demand road generalization method that adapts to both the facility search results and the stroke length. Moreover, a sufficiently fast response speed is achieved for practical use in web map services. In particular, this study proposes a fat-stroke model that links facility information to individual strokes and implements a road generalization method that uses this model to improve the response time. In addition, we develop a prototype based on the proposed system. The system evaluation results are based on three indicators, namely, response time of the road generalization system, connectivity between strokes, and connectivity between stroke and facilities. Our experimental results suggest that the proposed method can yield improved response times by a factor of 100 or more while affording higher connectivity.

2381-2400hit(20498hit)