The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2781-2800hit(20498hit)

  • Estimating the Quality of Fractal Compressed Images Using Lacunarity

    Megumi TAKEZAWA  Hirofumi SANADA  Takahiro OGAWA  Miki HASEYAMA  

     
    LETTER

      Vol:
    E101-A No:6
      Page(s):
    900-903

    In this paper, we propose a highly accurate method for estimating the quality of images compressed using fractal image compression. Using an iterated function system, fractal image compression compresses images by exploiting their self-similarity, thereby achieving high levels of performance; however, we cannot always use fractal image compression as a standard compression technique because some compressed images are of low quality. Generally, sufficient time is required for encoding and decoding an image before it can be determined whether the compressed image is of low quality or not. Therefore, in our previous study, we proposed a method to estimate the quality of images compressed using fractal image compression. Our previous method estimated the quality using image features of a given image without actually encoding and decoding the image, thereby providing an estimate rather quickly; however, estimation accuracy was not entirely sufficient. Therefore, in this paper, we extend our previously proposed method for improving estimation accuracy. Our improved method adopts a new image feature, namely lacunarity. Results of simulation showed that the proposed method achieves higher levels of accuracy than those of our previous method.

  • More New Classes of Differentially 4-Uniform Permutations with Good Cryptographic Properties

    Jie PENG  Chik How TAN  Qichun WANG  Jianhua GAO  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:6
      Page(s):
    945-952

    Research on permutation polynomials over the finite field F22k with significant cryptographical properties such as possibly low differential uniformity, possibly high nonlinearity and algebraic degree has attracted a lot of attention and made considerable progress in recent years. Once used as the substitution boxes (S-boxes) in the block ciphers with Substitution Permutation Network (SPN) structure, this kind of polynomials can have a good performance against the classical cryptographic analysis such as linear attacks, differential attacks and the higher order differential attacks. In this paper we put forward a new construction of differentially 4-uniformity permutations over F22k by modifying the inverse function on some specific subsets of the finite field. Compared with the previous similar works, there are several advantages of our new construction. One is that it can provide a very large number of Carlet-Charpin-Zinoviev equivalent classes of functions (increasing exponentially). Another advantage is that all the functions are explicitly constructed, and the polynomial forms are obtained for three subclasses. The third advantage is that the chosen subsets are very large, hence all the new functions are not close to the inverse function. Therefore, our construction may provide more choices for designing of S-boxes. Moreover, it has been checked by a software programm for k=3 that except for one special function, all the other functions in our construction are Carlet-Charpin-Zinoviev equivalent to the existing ones.

  • Hybrid Opto-Electrical CDM-Based Access Network

    Takahiro KODAMA  Gabriella CINCOTTI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/12/01
      Vol:
    E101-B No:6
      Page(s):
    1359-1365

    A novel adaptive code division multiplexing system with hybrid electrical and optical codes is proposed for flexible and dynamic resource allocation in next generation asynchronous optical access networks. We analyze the performance of a 10Gbps × 12 optical node unit, using hierarchical 8-level optical and 4-level electrical phase shift keying codes.

  • Asymmetrical Waveform Compensation for Concurrent Dual-Band 1-bit Band-Pass Delta-Sigma Modulator with a Quasi-Elliptic Filter

    Takashi MAEHATA  Suguru KAMEDA  Noriharu SUEMATSU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2017/12/13
      Vol:
    E101-B No:6
      Page(s):
    1352-1358

    The 1-bit band-pass delta-sigma modulator (BP-DSM) achieves high resolution if it uses an oversampling technique. This method can generate concurrent dual-band RF signals from a digitally modulated signal using a 1-bit digital pulse train. It was previously reported that the adjacent channel leakage ratio (ACLR) deteriorates owing to the asymmetrical waveform created by the pulse transition mismatch error of the rising and falling waveforms in the time domain and that the ACLR can be improved by distortion compensation. However, the reported distortion compensation method can only be performed for single-band transmission, and it fails to support multi-band transmission because the asymmetrical waveform compensated signal extends over a wide frequency range and is itself a harmful distortion outside the target band. Unfortunately, the increase of out-of-band power causes the BP-DSM unstable. We therefore propose a distortion compensator for a concurrent dual-band 1-bit BP-DSM that consists of a noise transfer function with a quasi-elliptic filter that can control the out-of-band gain frequency response against out-of-band oscillation. We demonstrate that dual-band LTE signals, each with 40MHz (2×20MHz) bandwidth, at 1.5 and 3.0GHz, can be compensated concurrently for spurious distortion under various combinations of rising and falling times and ACLR of up to 48dB, each with 120MHz bandwidth, including the double sided adjacent channels and next adjacent channels, is achieved.

  • On Robust Approximate Feedback Linearization with Non-Trivial Diagonal Terms

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E101-A No:6
      Page(s):
    971-973

    A problem of global stabilization of a class of approximately feedback linearized systems is considered. A new system structural feature is the presence of non-trivial diagonal terms along with nonlinearity, which has not been addressed by the previous control results. The stability analysis reveals a new relationship between the time-varying rates of system parameters and system nonlinearity along with our controller. Two examples are given for illustration.

  • Exposure-Resilient Identity-Based Dynamic Multi-Cast Key Distribution

    Kazuki YONEYAMA  Reo YOSHIDA  Yuto KAWAHARA  Tetsutaro KOBAYASHI  Hitoshi FUJI  Tomohide YAMAMOTO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:6
      Page(s):
    929-944

    In this paper, we propose the first identity-based dynamic multi-cast key distribution (ID-DMKD) protocol which is secure against maximum exposure of secret information (e.g., secret keys and session-specific randomness). In DMKD protocols, users share a common session key without revealing any information of the session key to the semi-honest server, and can join/leave to/from the group at any time even after establishing the session key. Most of the known DMKD protocols are insecure if some secret information is exposed. Recently, an exposure resilient DMKD protocol was introduced, however, each user must manage his/her certificate by using the public-key infrastructure. We solve this problem by constructing the DMKD protocol authenticated by user's ID (i.e., without certificate). We introduce a formal security definition for ID-DMKD by extending the previous definition for DMKD. We must carefully consider exposure of the server's static secret key in the ID-DMKD setting because exposure of the server's static secret key causes exposure of all users' static secret keys. We prove that our protocol is secure in our security model in the standard model. Another advantage of our protocol is scalability: communication and computation costs of each user are independent from the number of users. Furthermore, we show how to extend our protocol to achieve non-interactive join by using certificateless encryption. Such an extension is useful in applications that the group members frequently change like group chat services.

  • Cooperative Jamming for Secure Transmission with Finite Alphabet Input under Individual Power Constraint

    Kuo CAO  Yueming CAI  Yongpeng WU  Weiwei YANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:6
      Page(s):
    961-966

    This letter studies secure transmission design with finite alphabet input for cooperative jamming network under individual power constraint. By adopting the zero-force scheme, where the jamming signal is fully laid in the null space of the relay-destination channel, the problem of enhancing the achievable secrecy rate is decomposed into two independent subproblems: relay weights design and power control. We reveal that the problem of relay weights design is identical to the problem of minimizing the maximal equivalent source-eavesdropper channel gain, which can be transformed into a semi-definite programming (SDP) problem and thus is tackled using interior point method. Besides, the problem of power control is solved with the fundamental relation between mutual information and minimum mean square error (MMSE). Numerical results show that the proposed scheme achieves significant performance gains compared to the conventional Gaussian design.

  • Correlation Performance Measures for Phase-Only Correlation Functions Based on Directional Statistics

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:6
      Page(s):
    967-970

    This letter proposes performance evaluation of phase-only correlation (POC) functions using signal-to-noise ratio (SNR) and peak-to-correlation energy (PCE). We derive the general expressions of SNR and PCE of the POC functions as correlation performance measures. SNR is expressed by simple fractional function of circular variance. PCE is simply given by squared peak value of the POC functions, and its expectation can be expressed in terms of circular variance.

  • Image Denoising Using Block-Rotation-Based SVD Filtering in Wavelet Domain

    Min WANG  Shudao ZHOU  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/03/14
      Vol:
    E101-D No:6
      Page(s):
    1621-1628

    This paper proposes an image denoising method using singular value decomposition (SVD) with block-rotation-based operations in wavelet domain. First, we decompose a noisy image to some sub-blocks, and use the single-level discrete 2-D wavelet transform to decompose each sub-block into the low-frequency image part and the high-frequency parts. Then, we use SVD and rotation-based SVD with the rank-1 approximation to filter the noise of the different high-frequency parts, and get the denoised sub-blocks. Finally, we reconstruct the sub-block from the low-frequency part and the filtered the high-frequency parts by the inverse wavelet transform, and reorganize each denoised sub-blocks to obtain the final denoised image. Experiments show the effectiveness of this method, compared with relevant methods.

  • Complex-Valued Fully Convolutional Networks for MIMO Radar Signal Segmentation

    Motoko TACHIBANA  Kohei YAMAMOTO  Kurato MAENO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/02/20
      Vol:
    E101-D No:5
      Page(s):
    1445-1448

    Radar is expected in advanced driver-assistance systems for environmentally robust measurements. In this paper, we propose a novel radar signal segmentation method by using a complex-valued fully convolutional network (CvFCN) that comprises complex-valued layers, real-valued layers, and a bidirectional conversion layer between them. We also propose an efficient automatic annotation system for dataset generation. We apply the CvFCN to two-dimensional (2D) complex-valued radar signal maps (r-maps) that comprise angle and distance axes. An r-maps is a 2D complex-valued matrix that is generated from raw radar signals by 2D Fourier transformation. We annotate the r-maps automatically using LiDAR measurements. In our experiment, we semantically segment r-map signals into pedestrian and background regions, achieving accuracy of 99.7% for the background and 96.2% for pedestrians.

  • Improvement of Endurance Characteristics for Al-Gate Hf-Based MONOS Structures on Atomically Flat Si(100) Surface Realized by Annealing in Ar/H2 Ambient

    Sohya KUDOH  Shun-ichiro OHMI  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    328-333

    In this study, the effect of atomically flat Si(100) surface on Hf-based Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure was investigated. After the atomically flat Si(100) surface formation by annealing at 1050/60min in Ar/4%H2 ambient, HfO2(O)/HfN1.0(N)/HfO2(O) structure with thickness of 10/3/2nm, respectively, was in-situ deposited by electron cyclotron resonance (ECR) plasma sputtering. The memory window (MW) of Al/HfO2/HfN1.0/HfO2/p-Si(100) diodes was increased from 1.0V to 2.5V by flattening of Si(100) surface. The program and erase (P/E) voltage/time were set as 10V/5s and -8V/5s, respectively. Furthermore, it was found that the gate current density after the 103P/E cycles was decreased one order of magnitude by flattening of Si(100) surface in Ar/4.0%H2 ambient.

  • Pixel Selection and Intensity Directed Symmetry for High Frame Rate and Ultra-Low Delay Matching System

    Tingting HU  Takeshi IKENAGA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1260-1269

    High frame rate and ultra-low delay matching system plays an increasingly important role in human-machine interactive applications which call for higher frame rate and lower delay for a better experience. The large amount of processing data and the complex computation in a local feature based matching system, make it difficult to achieve a high process speed and ultra-low delay matching with limited resource. Aiming at a matching system with the process speed of more than 1000 fps and with the delay of less than 1 ms/frame, this paper puts forward a local binary feature based matching system with field-programmable gate array (FPGA). Pixel selection based 4-1-4 parallel matching and intensity directed symmetry are proposed for the implementation of this system. To design a basic framework with the high process speed and ultra-low delay using limited resource, pixel selection based 4-1-4 parallel matching is proposed, which makes it possible to use only one-thread resource consumption to achieve a four-thread processing. Assumes that the orientation of the keypoint will bisect the patch best and will point to the region with high intensity, intensity directed symmetry is proposed to calculate the keypoint orientation in a hardware friendly way, which is an important part for a rotation-robust matching system. Software experiment result shows that the proposed keypoint orientation calculation method achieves almost the same performance with the state-of-art intensity centroid orientation calculation method in a matching system. Hardware experiment result shows that the designed image process core supports to process VGA (640×480) videos at a process speed of 1306 fps and with a delay of 0.8083 ms/frame.

  • Point of Gaze Estimation Using Corneal Surface Reflection and Omnidirectional Camera Image

    Taishi OGAWA  Atsushi NAKAZAWA  Toyoaki NISHIDA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1278-1287

    We present a human point of gaze estimation system using corneal surface reflection and omnidirectional image taken by spherical panorama cameras, which becomes popular recent years. Our system enables to find where a user is looking at only from an eye image in a 360° surrounding scene image, thus, does not need gaze mapping from partial scene images to a whole scene image that are necessary in conventional eye gaze tracking system. We first generate multiple perspective scene images from an omnidirectional (equirectangular) image and perform registration between the corneal reflection and perspective images using a corneal reflection-scene image registration technique. We then compute the point of gaze using a corneal imaging technique leveraged by a 3D eye model, and project the point to an omnidirectional image. The 3D eye pose is estimate by using the particle-filter-based tracking algorithm. In experiments, we evaluated the accuracy of the 3D eye pose estimation, robustness of registration and accuracy of PoG estimations using two indoor and five outdoor scenes, and found that gaze mapping error was 5.546 [deg] on average.

  • Extraction and Recognition of Shoe Logos with a Wide Variety of Appearance Using Two-Stage Classifiers

    Kazunori AOKI  Wataru OHYAMA  Tetsushi WAKABAYASHI  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1325-1332

    A logo is a symbolic presentation that is designed not only to identify a product manufacturer but also to attract the attention of shoppers. Shoe logos are a challenging subject for automatic extraction and recognition using image analysis techniques because they have characteristics that distinguish them from those of other products; that is, there is much within-class variation in the appearance of shoe logos. In this paper, we propose an automatic extraction and recognition method for shoe logos with a wide variety of appearance using a limited number of training samples. The proposed method employs maximally stable extremal regions for the initial region extraction, an iterative algorithm for region grouping, and gradient features and a support vector machine for logo recognition. The results of performance evaluation experiments using a logo dataset that consists of a wide variety of appearances show that the proposed method achieves promising performance for both logo extraction and recognition.

  • Forecasting Service Performance on the Basis of Temporal Information by the Conditional Restricted Boltzmann Machine

    Jiali YOU  Hanxing XUE  Yu ZHUO  Xin ZHANG  Jinlin WANG  

     
    PAPER-Network

      Pubricized:
    2017/11/10
      Vol:
    E101-B No:5
      Page(s):
    1210-1221

    Predicting the service performance of Internet applications is important in service selection, especially for video services. In order to design a predictor for forecasting video service performance in third-party application, two famous service providers in China, Iqiyi and Letv, are monitored and analyzed. The study highlights that the measured performance in the observation period is time-series data, and it has strong autocorrelation, which means it is predictable. In order to combine the temporal information and map the measured data to a proper feature space, the authors propose a predictor based on a Conditional Restricted Boltzmann Machine (CRBM), which can capture the potential temporal relationship of the historical information. Meanwhile, the measured data of different sources are combined to enhance the training process, which can enlarge the training size and avoid the over-fit problem. Experiments show that combining the measured results from different resolutions for a video can raise prediction performance, and the CRBM algorithm shows better prediction ability and more stable performance than the baseline algorithms.

  • Partial Transmit Sequence Technique with Low Complexity in OFDM System

    Chang-Hee KANG  Sung-Soon PARK  Young-Hwan YOU  Hyoung-Kyu SONG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1291-1298

    In wireless communication systems, OFDM technology is a communication method that can yield high data rates. However, OFDM systems suffer high PAPR values due to the use of many of subcarriers. The SLM and the PTS technique were proposed to solve the PAPR problem in OFDM systems. However, these approaches have the disadvantage of having high complexity. This paper proposes a method which has lower complexity than the conventional PTS method but has less performance degradation.

  • PdEr-Silicide Formation and Contact Resistivity Reduction to n-Si(100) Realized by Dopant Segregation Process

    Shun-ichiro OHMI  Yuya TSUKAMOTO  Weiguang ZUO  Yasushi MASAHIRO  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    311-316

    In this paper, we have investigated the PdEr-silicide formation utilizing a developed PdEr-alloy target for sputtering, and evaluated the contact resistivity of PdEr-silicide layer formed on n-Si(100) by dopant segregation process for the first time. Pd2Si and ErSi2 have same hexagonal structure, while the Schottky barrier height for electron (Φbn) is different as 0.75 eV and 0.28 eV, respectively. A 20 nm-thick PdEr-alloy layer was deposited on the n-Si(100) substrates utilizing a developed PdEr-alloy target by the RF magnetron sputtering at room temperature. Then, 10 nm-thick TiN encapsulating layer was in-situ deposited at room temperature. Next, silicidation was carried out by the RTA at 500 for 5 min in N2/4.9%H2 followed by the selective etching. From the J-V characteristics of fabricated Schottky diode, qΦbn was reduced from 0.75 eV of Pd2Si to 0.43 eV of PdEr-silicide. Furthermore, 4.0x10-8Ωcm2 was extracted for the PdEr-silicide to n-Si(100) by the dopant segregation process.

  • Real-Time Color Image Improvement System for Visual Testing of Nuclear Reactors

    Naoki HOSOYA  Atsushi MIYAMOTO  Junichiro NAGANUMA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1243-1250

    Nuclear power plants require in-vessel inspections for soundness checks and preventive maintenance. One inspection procedure is visual testing (VT), which is based on video images of an underwater camera in a nuclear reactor. However, a lot of noise is superimposed on VT images due to radiation exposure. We propose a technique for improving the quality of those images by image processing that reduces radiation noise and enhances signals. Real-time video processing was achieved by applying the proposed technique with a parallel processing unit. Improving the clarity of VT images will lead to reducing the burden on inspectors.

  • A Novel Transmission Scheme for Polarization Dependent Loss Elimination in Dual-Polarized Satellite Systems

    Zhangkai LUO  Huali WANG  Kaijie ZHOU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:5
      Page(s):
    872-877

    In this letter, a novel transmission scheme is proposed to eliminate the polarization dependent loss (PDL) effect in dual-polarized satellite systems. In fact, the PDL effect is the key problem that limits the performance of the systems based on the PM technique, while it is naturally eliminated in the proposed scheme since we transmit the two components of the polarized signal in turn in two symbol periods. Moreover, a simple and effective detection method based on the signal's power is proposed to distinguish the polarization characteristic of the transmit antenna. In addition, there is no requirement on the channel state information at the transmitter, which is popular in satellite systems. Finally, superiorities are validated by the theoretical analysis and simulation results in the dual-polarized satellite systems.

  • Doppler Spread Estimation for an OFDM System with a Rayleigh Fading Channel

    Eunchul YOON  Janghyun KIM  Unil YUN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/11/13
      Vol:
    E101-B No:5
      Page(s):
    1328-1335

    A novel Doppler spread estimation scheme is proposed for an orthogonal frequency division multiplexing (OFDM) system with a Rayleigh fading channel. The proposal develops a composite power spectral density (PSD) function by averaging the multiple PSD functions computed with multiple sets of the channel frequency response (CFR) coefficients. The Doppler spread is estimated by finding the maximum location of the composite PSD quantities larger than a threshold value given by a fixed fraction of the maximum composite PSD quantity. It is shown by simulation that the proposed scheme performs better than three conventional Doppler spread estimation schemes not only in isotropic scattering environments, but also in nonisotropic scattering environments. Moreover, the proposed scheme is shown to perform well in some Rician channel environments if the Rician K-factor is small.

2781-2800hit(20498hit)