The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2921-2940hit(20498hit)

  • Stochastic Divergence Minimization for Biterm Topic Models

    Zhenghang CUI  Issei SATO  Masashi SUGIYAMA  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2017/12/20
      Vol:
    E101-D No:3
      Page(s):
    668-677

    As the emergence and the thriving development of social networks, a huge number of short texts are accumulated and need to be processed. Inferring latent topics of collected short texts is an essential task for understanding its hidden structure and predicting new contents. A biterm topic model (BTM) was recently proposed for short texts to overcome the sparseness of document-level word co-occurrences by directly modeling the generation process of word pairs. Stochastic inference algorithms based on collapsed Gibbs sampling (CGS) and collapsed variational inference have been proposed for BTM. However, they either require large computational complexity, or rely on very crude estimation that does not preserve sufficient statistics. In this work, we develop a stochastic divergence minimization (SDM) inference algorithm for BTM to achieve better predictive likelihood in a scalable way. Experiments show that SDM-BTM trained by 30% data outperforms the best existing algorithm trained by full data.

  • On-Orbit Estimation and Calibration of GPS Antenna Geometry Offsets for Attitude Determination of LEO Satellites

    Huiling HOU  Weisheng HU  Kang WU  Xuwen LIANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:3
      Page(s):
    644-648

    In this letter, a novel on-orbit estimation and calibration method of GPS antenna geometry offsets for attitude determination of LEO satellites is proposed. Both baseline vectors in the NED coordinate system are achieved epoch-by-epoch firstly. Then multiple epochs' baseline vectors are united to compute all the offsets via an UKF for a certain long time. After on-orbit estimation and calibration, instantaneous and accurate attitude can be achieved. Numerical results show that the proposed method can obtain the offsets of each baseline in all directions with high accuracy estimation and small STDs, and effective attitudes can be achieved after antenna geometry calibration using the estimated offsets. The high accuracy give the proposed scheme a strong practical-oriented ability.

  • Intelligent Video Surveillance System Based on Event Detection and Rate Adaptation by Using Multiple Sensors

    Kenji KANAI  Keigo OGAWA  Masaru TAKEUCHI  Jiro KATTO  Toshitaka TSUDA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    688-697

    To reduce the backbone video traffic generated by video surveillance, we propose an intelligent video surveillance system that offers multi-modal sensor-based event detection and event-driven video rate adaptation. Our proposed system can detect pedestrian existence and movements in the monitoring area by using multi-modal sensors (camera, laser scanner and infrared distance sensor) and control surveillance video quality according to the detected events. We evaluate event detection accuracy and video traffic volume in the experiment scenarios where up to six pedestrians pass through and/or stop at the monitoring area. Evaluation results conclude that our system can significantly reduce video traffic while ensuring high-quality surveillance.

  • Network Congestion Minimization Models Based on Robust Optimization

    Bimal CHANDRA DAS  Satoshi TAKAHASHI  Eiji OKI  Masakazu MURAMATSU  

     
    PAPER-Network

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    772-784

    This paper introduces robust optimization models for minimization of the network congestion ratio that can handle the fluctuation in traffic demands between nodes. The simplest and widely used model to minimize the congestion ratio, called the pipe model, is based on precisely specified traffic demands. However, in practice, network operators are often unable to estimate exact traffic demands as they can fluctuate due to unpredictable factors. To overcome this weakness, we apply robust optimization to the problem of minimizing the network congestion ratio. First, we review existing models as robust counterparts of certain uncertainty sets. Then we consider robust optimization assuming ellipsoidal uncertainty sets, and derive a tractable optimization problem in the form of second-order cone programming (SOCP). Furthermore, we take uncertainty sets to be the intersection of ellipsoid and polyhedral sets, and considering the mirror subproblems inherent in the models, obtain tractable optimization problems, again in SOCP form. Compared to the previous model that assumes an error interval on each coordinate, our models have the advantage of being able to cope with the total amount of errors by setting a parameter that determines the volume of the ellipsoid. We perform numerical experiments to compare our SOCP models with the existing models which are formulated as linear programming problems. The results demonstrate the relevance of our models in terms of congestion ratio and computation time.

  • The Declarative and Reusable Path Composition for Semantic Web-Driven SDN

    Xi CHEN  Tao WU  Lei XIE  

     
    PAPER-Network

      Pubricized:
    2017/08/29
      Vol:
    E101-B No:3
      Page(s):
    816-824

    The centralized controller of SDN enables a global topology view of the underlying network. It is possible for the SDN controller to achieve globally optimized resource composition and utilization, including optimized end-to-end paths. Currently, resource composition in SDN arena is usually conducted in an imperative manner where composition logics are explicitly specified in high level programming languages. It requires strong programming and OpenFlow backgrounds. This paper proposes declarative path composition, namely Compass, which offers a human-friendly user interface similar to natural language. Borrowing methodologies from Semantic Web, Compass models and stores SDN resources using OWL and RDF, respectively, to foster the virtualized and unified management of the network resources regardless of the concrete controller platform. Besides, path composition is conducted in a declarative manner where the user merely specifies the composition goal in the SPARQL query language instead of explicitly specifying concrete composition details in programming languages. Composed paths are also reused based on similarity matching, to reduce the chance of time-consuming path composition. The experiment results reflect the applicability of Compass in path composition and reuse.

  • PTS-Based PAPR Reduction by Iterative p-Norm Minimization without Side Information in OFDM Systems

    Moeko YOSHIDA  Hiromichi NASHIMOTO  Teruyuki MIYAJIMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/24
      Vol:
    E101-B No:3
      Page(s):
    856-864

    This paper proposes a partial transmit sequences (PTS)-based PAPR reduction method and a phase factor estimation method without side information for OFDM systems with QPSK and 16QAM modulation. In the transmitter, an iterative algorithm that minimizes the p-norm of a transmitted signal determines phase factors to reduce PAPR. Unlike conventional methods, the phase factors are allowed to take continuous values in a limited range. In the receiver, the phase factor is blindly estimated by evaluating the phase differences between the equalizer's output and its closest constellation points. Simulation results show that the proposed PAPR reduction method is more computationally efficient than the conventional PTS. Moreover, the combined use of the two proposed methods achieves a satisfactory tradeoff between PAPR and BER by limiting the phase factors properly.

  • Network-Listening Based Synchronization with Loop-Back Interference Avoidance Using Synchronization Signal

    Mitsukuni KONISHI  Sho NABATAME  Daigo OGATA  Atsushi NAGATE  Teruya FUJII  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/11
      Vol:
    E101-B No:3
      Page(s):
    885-896

    Network-listening-based synchronization is recently attracting attention as an effective timing synchronization method for indoor small-cell base stations as they cannot utilize GPS-based synchronization. It uses only the macro-cell downlink signal to establish synchronization with the overlaying macro cell. However, the loop-back signal from the small-cell base station itself interferes with the reception of the macro-cell downlink signal in the deployment of co-channel heterogeneous networks. In this paper, we investigate a synchronization method that avoids loop-back interference by muting small-cell data transmission and shifting small-cell transmission timing. Our proposal enables to reduce the processing burden of the network listening and mitigate the throughput degradation of the small cell caused by the data-transmission mutation. In addition to this, the network-listening system enables the network listening in dense small cell deployments where a large number of neighboring small cells exist. We clarify the performance of our proposal by computer simulations and laboratory experiments on actual equipment.

  • On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN

    Rongzhen LI  Qingbo WU  Yusong TAN  Junyang ZHANG  

     
    PAPER-Information Network

      Pubricized:
    2017/12/18
      Vol:
    E101-D No:3
      Page(s):
    698-708

    Software-defined networking (SDN) has emerged as a promising approach to enable network innovation, which can provide network virtualization through a hypervisor plane to share the same cloud datacenter network among multiple virtual networks. While, this attractive approach may bring some new problem that leads to more susceptible to the failure of network component because of the separated control and forwarding planes. The centralized control and virtual network sharing the same physical network are becoming fragile and prone to failure if the topology of virtual network and the control path is not properly designed. Thus, how to map virtual network into physical datacenter network in virtualized SDN while guaranteeing the survivability against the failure of physical component is extremely important and should fully consider more influence factors on the survivability of virtual network. In this paper, combining VN with SDN, a topology-aware survivable virtual network embedding approach is proposed to improve the survivability of virtual network by an enhanced virtual controller embedding strategy to optimize the placement selection of virtual network without using any backup resources. The strategy explicitly takes account of the network delay and the number of disjoint path between virtual controller and virtual switch to minimize the expected percentage of control path loss with survivable factor. Extensive experimental evaluations have been conducted and the results verify that the proposed technology has improved the survivability and network delay while keeping the other within reasonable bounds.

  • Design and Impact on ESD/LU Immunities by Drain-Side Super-Junction Structures in Low-(High-)Voltage MOSFETs for the Power Applications

    Shen-Li CHEN  Yu-Ting HUANG  Shawn CHANG  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:3
      Page(s):
    143-150

    In this study, the reference pure metal-oxide semiconductor field-effect transistors (MOSFETs) and low-voltage (LV) and high-voltage (HV) MOSFETs with a super-junction (SJ) structure in the drain side were experimentally compared. The results show that the drain-side engineering of SJs exerts negative effects on the electrostatic discharge (ESD) and latch-up (LU) immunities of LV n-channel MOSFETs, whereas for LV p-channel MOSFETs and HV n-channel laterally diffused MOSFETs (nLDMOSs), the effects are positive. Compared with the pure MOSFET, electrostatic discharge (ESD) robustness (It2) decreased by approximately 30.25% for the LV nMOS-SJ, whereas It2 increased by approximately 2.42% and 46.63% for the LV pMOS-SJ and HV nLDMOS-SJ, respectively; furthermore, LU immunity (Vh) decreased by approximately 5.45% for the LV nMOS-SJ, whereas Vh increased by approximately 0.44% and 35.5% for the LV pMOS-SJ and HV nLDMOS-SJ, respectively. Thus, nMOS-SJ (pMOS-SJ and nLDMOS-SJ) has lower (higher) It2 and Vh, and this drain-side SJ structure of MOSFETs is an inferior (superior) choice for improving the ESD/LU reliability of LV nMOSs (LV pMOS and HV nLDMOS).

  • Approximate Frequent Pattern Discovery in Compressed Space

    Shouhei FUKUNAGA  Yoshimasa TAKABATAKE  Tomohiro I  Hiroshi SAKAMOTO  

     
    PAPER

      Pubricized:
    2017/12/19
      Vol:
    E101-D No:3
      Page(s):
    593-601

    A grammar compression is a restricted context-free grammar (CFG) that derives a single string deterministically. The goal of a grammar compression algorithm is to develop a smaller CFG by finding and removing duplicate patterns, which is simply a frequent pattern discovery process. Any frequent pattern can be obtained in linear time; however, a huge working space is required for longer patterns, and the entire string must be preloaded into memory. We propose an online algorithm to address this problem approximately within compressed space. For an input sequence of symbols, a1,a2,..., let Gi be a grammar compression for the string a1a2…ai. In this study, an online algorithm is considered one that can compute Gi+1 from (Gi,ai+1) without explicitly decompressing Gi. Here, let G be a grammar compression for string S. We say that variable X approximates a substring P of S within approximation ratio δ iff for any interval [i,j] with P=S[i,j], the parse tree of G has a node labeled with X that derives S[l,r] for a subinterval [l,r] of [i,j] satisfying |[l,r]|≥δ|[i,j]|. Then, G solves the frequent pattern discovery problem approximately within δ iff for any frequent pattern P of S, there exists a variable that approximates P within δ. Here, δ is called the approximation ratio of G for S. Previously, the best approximation ratio obtained by a polynomial time algorithm was Ω(1/lg2|P|). The main contribution of this work is to present a new lower bound Ω(1/<*|S|lg|P|) that is smaller than the previous bound when lg*|S|

  • Generalized Spatial Modulation Based on Quaternary Quasi-Orthogonal Sequences

    Yulong SHANG  Hojun KIM  Hosung PARK  Taejin JUNG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:3
      Page(s):
    640-643

    The conventional generalized spatial modulation (GSM) simultaneously activates multiple transmit antennas in order to improve the spectral efficiency of the original SM. In this letter, to lessen the hardware burden of the multiple RF chains, we provide a new scheme that is designed by combining the GSM scheme using only two active antennas with quaternary quasi-orthogonal sequences of a length of two. Compared with the other SM schemes, the proposed scheme has significant benefits in average error performances and/or their hardware complexities of the RF systems.

  • Mobile Edge Computing Empowers Internet of Things Open Access

    Nirwan ANSARI  Xiang SUN  

     
    INVITED PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    604-619

    In this paper, we propose a Mobile Edge Internet of Things (MEIoT) architecture by leveraging the fiber-wireless access technology, the cloudlet concept, and the software defined networking framework. The MEIoT architecture brings computing and storage resources close to Internet of Things (IoT) devices in order to speed up IoT data sharing and analytics. Specifically, the IoT devices (belonging to the same user) are associated to a specific proxy Virtual Machine (VM) in the nearby cloudlet. The proxy VM stores and analyzes the IoT data (generated by its IoT devices) in real-time. Moreover, we introduce the semantic and social IoT technology in the context of MEIoT to solve the interoperability and inefficient access control problem in the IoT system. In addition, we propose two dynamic proxy VM migration methods to minimize the end-to-end delay between proxy VMs and their IoT devices and to minimize the total on-grid energy consumption of the cloudlets, respectively. Performance of the proposed methods is validated via extensive simulations.

  • An Efficient Content Search Method Based on Local Link Replacement in Unstructured Peer-to-Peer Networks

    Nagao OGINO  Takeshi KITAHARA  

     
    PAPER-Network

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    740-749

    Peer-to-peer overlay networks can easily achieve a large-scale content sharing system on the Internet. Although unstructured peer-to-peer networks are suitable for finding entire partial-match content, flooding-based search is an inefficient way to obtain target content. When the shared content is semantically specified by a great number of attributes, it is difficult to derive the semantic similarity of peers beforehand. This means that content search methods relying on interest-based locality are more advantageous than those based on the semantic similarity of peers. Existing search methods that exploit interest-based locality organize multiple peer groups, in each of which peers with common interests are densely connected using short-cut links. However, content searches among multiple peer groups are still inefficient when the number of incident links at each peer is limited due to the capacity of the peer. This paper proposes a novel content search method that exploits interest-based locality. The proposed method can organize an efficient peer-to-peer network similar to the semantic small-world random graph, which can be organized by the existing methods based on the semantic similarity of peers. In the proposed method, topology transformation based on local link replacement maintains the numbers of incident links at all the peers. Simulation results confirm that the proposed method can achieve a significantly higher ratio of obtainable partial-match content than existing methods that organize peer groups.

  • DNN-Based Speech Synthesis Using Speaker Codes

    Nobukatsu HOJO  Yusuke IJIMA  Hideyuki MIZUNO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2017/11/01
      Vol:
    E101-D No:2
      Page(s):
    462-472

    Deep neural network (DNN)-based speech synthesis can produce more natural synthesized speech than the conventional HMM-based speech synthesis. However, it is not revealed whether the synthesized speech quality can be improved by utilizing a multi-speaker speech corpus. To address this problem, this paper proposes DNN-based speech synthesis using speaker codes as a method to improve the performance of the conventional speaker dependent DNN-based method. In order to model speaker variation in the DNN, the augmented feature (speaker codes) is fed to the hidden layer(s) of the conventional DNN. This paper investigates the effectiveness of introducing speaker codes to DNN acoustic models for speech synthesis for two tasks: multi-speaker modeling and speaker adaptation. For the multi-speaker modeling task, the method we propose trains connection weights of the whole DNN using a multi-speaker speech corpus. When performing multi-speaker synthesis, the speaker code corresponding to the selected target speaker is fed to the DNN to generate the speaker's voice. When performing speaker adaptation, a set of connection weights of the multi-speaker model is re-estimated to generate a new target speaker's voice. We investigated the relationship between the prediction performance and architecture of the DNNs through objective measurements. Objective evaluation experiments revealed that the proposed model outperformed conventional methods (HMMs, speaker dependent DNNs and multi-speaker DNNs based on a shared hidden layer structure). Subjective evaluation experimental results showed that the proposed model again outperformed the conventional methods (HMMs, speaker dependent DNNs), especially when using a small number of target speaker utterances.

  • PROVIT-CI: A Classroom-Oriented Educational Program Visualization Tool

    Yu YAN  Kohei HARA  Takenobu KAZUMA  Yasuhiro HISADA  Aiguo HE  

     
    PAPER-Educational Technology

      Pubricized:
    2017/11/01
      Vol:
    E101-D No:2
      Page(s):
    447-454

    Studies have shown that program visualization(PV) is effective for student programming exercise or self-study support. However, very few instructors actively use PV tools for programming lectures. This article discussed the impediments the instructors meet during combining PV tools into lecture classrooms and proposed a C programming classroom instruction support tool based on program visualization — PROVIT-CI (PROgram VIsualization Tool for Classroom Instruction). PROVIT-CI has been consecutively and actively used by the instructors in author's university to enhance their lectures since 2015. The evaluation of application results in an introductory C programming course shows that PROVIT-CI is effective and helpful for instructors classroom use.

  • Optimal Design Method of Sub-Ranging ADC Based on Stochastic Comparator

    Md. Maruf HOSSAIN  Tetsuya IIZUKA  Toru NAKURA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    410-424

    An optimal design method for a sub-ranging Analog-to-Digital Converter (ADC) based on stochastic comparator is demonstrated by performing theoretical analysis of random comparator offset voltages. If the Cumulative Distribution Function (CDF) of the comparator offset is defined appropriately, we can calculate the PDFs of the output code and the effective resolution of a stochastic comparator. It is possible to model the analog-to-digital conversion accuracy (defined as yield) of a stochastic comparator by assuming that the correlations among the number of comparator offsets within different analog steps corresponding to the Least Significant Bit (LSB) of the output transfer function are negligible. Comparison with Monte Carlo simulation verifies that the proposed model precisely estimates the yield of the ADC when it is designed for a reasonable target yield of >0.8. By applying this model to a stochastic comparator we reveal that an additional calibration significantly enhances the resolution, i.e., it increases the Number of Bits (NOB) by ∼ 2 bits for the same target yield. Extending the model to a stochastic-comparator-based sub-ranging ADC indicates that the ADC design parameters can be tuned to find the optimal resource distribution between the deterministic coarse stage and the stochastic fine stage.

  • Development of an Evaluation Platform and Performance Experimentation of Flex Power FPGA Device

    Toshihiro KATASHITA  Masakazu HIOKI  Yohei HORI  Hanpei KOIKE  

     
    PAPER-Device and Architecture

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    303-313

    Field-programmable gate array (FPGA) devices are applied for accelerating specific calculations and reducing power consumption in a wide range of areas. One of the challenges associated with FPGAs is reducing static power for enforcing their power effectiveness. We propose a method involving fine-grained reconfiguration of body biases of logic and net resources to reduce the static power of FPGA devices. In addition, we develop an FPGA device called Flex Power FPGA with SOTB technology and demonstrate its power reduction function with a 32-bit counter circuit. In this paper, we describe the construction of an experimental platform to precisely evaluate power consumption and the maximum operating frequency of the device under various operating voltages and body biases with various practical circuits. Using the abovementioned platform, we evaluate the Flex Power FPGA chip at operating voltages of 0.5-1.0 V and at body biases of 0.0-0.5 V. In the evaluation, we use a 32-bit adder, 16-bit multiplier, and an SBOX circuit for AES cryptography. We operate the chip virtually with uniformed body bias voltage to drive all of the logic resources with the same threshold voltage. We demonstrate the advantage of the Flex Power FPGA by comparing its performance with non-reconfigurable biasing.

  • Reduction of Constraints from Multipartition to Bipartition in Augmenting Edge-Connectivity of a Graph by One

    Satoshi TAOKA  Tadachika OKI  Toshiya MASHIMA  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    357-366

    The k-edge-connectivity augmentation problem with multipartition constraints (kECAMP, for short) is defined by “Given a multigraph G=(V,E) and a multipartition π={V1,...,Vr} (r≥2) of V, that is, $V = igcup_{h = 1}^r V_h$ and Vi∩Vj=∅ (1≤i

  • Circuit Modeling Technique for Electrically-Very-Small Devices Based on Laurent Series Expansion of Self-/Mutual Impedances

    Nozomi HAGA  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/08/14
      Vol:
    E101-B No:2
      Page(s):
    555-563

    This paper proposes a circuit modeling technique for electrically-very-small devices, e.g. electrodes for intrabody communications, coils for wireless power transfer systems, high-frequency transformers, etc. The proposed technique is based on the method of moments and can be regarded as an improved version of the partial element equivalent circuit method.

  • Realizability of Choreography Given by Two Scenarios

    Toshiki KINOSHITA  Toshiyuki MIYAMOTO  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    345-356

    For a service-oriented architecture-based system, the problem of synthesizing a concrete model (i.e., behavioral model) for each peer configuring the system from an abstract specification-which is referred to as choreography-is known as the choreography realization problem. A flow of interaction of peers is called a scenario. In our previous study, we showed conditions and an algorithm to synthesize concrete models when choreography is given by one scenario. In this paper, we extend the study for choreography given by two scenarios. We show necessary and sufficient conditions on the realizability of choreography under both cases where there exist conflicts between scenarios and no conflicts exist.

2921-2940hit(20498hit)