The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

2721-2740hit(20498hit)

  • Dynamic Energy Efficient Virtual Link Resource Reallocation Approach for Network Virtualization Environment

    Shanming ZHANG  Takehiro SATO  Satoru OKAMOTO  Naoaki YAMANAKA  

     
    PAPER-Network

      Pubricized:
    2018/01/10
      Vol:
    E101-B No:7
      Page(s):
    1675-1684

    The energy consumption of network virtualization environments (NVEs) has become a critical issue. In this paper, we focus on reducing the data switching energy consumption of NVE. We first analyze the data switching energy of NVE. Then, we propose a dynamic energy efficient virtual link resource reallocation (eEVLRR) approach for NVE. eEVLRR dynamically reallocates the energy efficient substrate resources (s-resources) for virtual links with dynamic changes of embeddable s-resources to save the data switching energy. In order to avoid traffic interruptions while reallocating, we design a cross layer application-session-based forwarding model for eEVLRR that can identify and forward each data transmission flow along the initial specified substrate data transport path until end without traffic interruptions. The results of performance evaluations show that eEVLRR not only guarantees the allocated s-resources of virtual links are continuously energy efficient to save data switching energy but also has positive impacts on virtual network acceptance rate, revenues and s-resources utilization.

  • A Unified Analysis of the Signal Transfer Characteristics of a Single-Path FET-R-C Circuit Open Access

    Tetsuya IIZUKA  Asad A. ABIDI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    432-443

    A frequently occurring subcircuit consists of a loop of a resistor (R), a field-effect transistor (FET), and a capacitor (C). The FET acts as a switch, controlled at its gate terminal by a clock voltage. This subcircuit may be acting as a sample-and-hold (S/H), as a passive mixer (P-M), or as a bandpass filter or bandpass impedance. In this work, we will present a useful analysis that leads to a simple signal flow graph (SFG), which captures the FET-R-C circuit's action completely across a wide range of design parameters. The SFG dissects the circuit into three filtering functions and ideal sampling. This greatly simplifies analysis of frequency response, noise, input impedance, and conversion gain, and leads to guidelines for optimum design. This paper focuses on the analysis of a single-path FET-R-C circuit's signal transfer characteristics including the reconstruction of the complete waveform from the discrete-time sampled voltage.

  • Column-Parallel ADCs for CMOS Image Sensors and Their FoM-Based Evaluations Open Access

    Shoji KAWAHITO  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    444-456

    This paper reviews architectures and topologies for column-parallel analog-to-digital converters (ADCs) used for CMOS image sensors (CISs) and discusses the performance of CISs using column-parallel ADCs based on figures-of-merit (FoM) with considering noise models which behave differently at low/middle and high pixel-rate regions. Various FoM considering different performance factors are defined. The defined FoM are applied to surveyed data on reported CISs using column-parallel ADCs which are categorized into 4 types; single slope, SAR, cyclic and delta-sigma ADCs. The FoM defined by (noise)2(power)/(pixel-rate) separately for low/middle and high pixel-rate regions well explains the frontline of the CIS' performance in all the pixel rates. Using the FoM defined by (noise)2(power)/(intrascene dynamic range)(pixel-rate), the effectiveness of recently-reported techniques for extended-dynamic-range CISs is clarified.

  • Optimization of Resonant Capacitance in Wireless Power Transfer System with 3-D Stacked Two Receivers

    Shusuke YANAGAWA  Ryota SHIMIZU  Mototsugu HAMADA  Toru SHIMIZU  Tadahiro KURODA  

     
    BRIEF PAPER

      Vol:
    E101-C No:7
      Page(s):
    488-492

    This paper describes a top-down design methodology to optimize resonant capacitance in a wireless power transfer system with 3-D stacked two receivers. A 1:2 selective wireless power transfer is realized by a frequency/time division multiplexing scheme. The power transfer function is analytically formulated and the optimum tuning capacitance is derived, which is validated by comparing with system simulation results. By using the optimized values, power transfer efficiencies at 6.78MHz and 13.56MHz are simulated to be 80% and 84%, respectively, which are <3% worse than a conventional wireless power transfer system.

  • Si-Photonics-Based Layer-to-Layer Coupler Toward 3D Optical Interconnection Open Access

    Nobuhiko NISHIYAMA  JoonHyun KANG  Yuki KUNO  Kazuto ITOH  Yuki ATSUMI  Tomohiro AMEMIYA  Shigehisa ARAI  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    501-508

    To realize three-dimensional (3D) optical interconnection on large-scale integration (LSI) circuits, layer-to-layer couplers based on Si-photonics platform were reviewed. In terms of optical cross talk, more than 1 µm layer distance is required for 3D interconnection. To meet this requirement for the layer-to-layer optical coupler, we proposed two types of couplers: a pair of grating couplers with metal mirrors for multi-layer distance coupling and taper-type directional couplers for neighboring layer distance coupling. Both structures produced a high coupling efficiency with relatively compact (∼100 µm) device sizes with a complementary metal oxide semiconductor (CMOS) compatible fabrication process.

  • Wavelength-Switchable Mid-Infrared Narrowband Thermal Emitters Based on Quantum Wells and Photonic Crystals Open Access

    Takuya INOUE  Menaka DE ZOYSA  Takashi ASANO  Susumu NODA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    545-552

    Development of narrowband thermal emitters whose emission wavelengths are dynamically tunable is highly desired for various applications including the sensing of gases and chemical compounds. In this paper, we review our recent demonstration of wavelength-switchable mid-infrared thermal emitters based on multiple quantum wells (MQWs) and photonic crystals (PCs). Through the control of absorptivity by using intersubband transitions in MQWs and optical resonances in PC slabs, we demonstrate novel control of thermal emission, including realization of high-Q (Q>100) thermal emission, dynamic control of thermal emission (∼MHz), and electrical wavelength switching of thermal emission from a single device.

  • Low-Loss 3-Dimensional Shuffling Graded-Index Polymer Optical Waveguides for Optical Printed Circuit Boards Open Access

    Omar Faruk RASEL  Akira YAMAUCHI  Takaaki ISHIGURE  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    509-517

    This paper introduces a formation method for 3-dimensional 6 ch.×6 ch. shuffling structures with graded-index (GI) circular core in a multimode polymer optical waveguide for optical printed circuit boards (OPCBs) using a unique photomask-free fabrication technique named the Mosquito method. The interchannel pitch of the fabricated waveguides is 250µm, where all the channels consist of both horizontal and vertical bending structures and the last 6 channels in parallel cross over the first 6 channels. We also report 3-dimensional S-shaped polymer waveguides. In the S-shaped waveguides, the first and last 6 channels with both horizontal and vertical core bending composing the above 3-dimensional shuffling waveguide are separated, in order to evaluate the effect of over-crossing on the loss. It is experimentally confirmed that there is no excess insertion loss due to the shuffling structure in the 3-D shuffling waveguide. The evaluated crosstalk of the 3-D shuffling waveguide is lower than -30dB. The 3-D shuffling waveguide proposed in this paper will be a promising component to achieve high bandwidth density wiring for on-board optical interconnects.

  • A Novel Method to Measure Absolute Internal Quantum Efficiency in III-Nitride Semiconductors by Simultaneous Photo-Acoustic and Photoluminescence Spectroscopy Open Access

    Atsushi A. YAMAGUCHI  Kohei KAWAKAMI  Naoto SHIMIZU  Yuchi TAKAHASHI  Genki KOBAYASHI  Takashi NAKANO  Shigeta SAKAI  Yuya KANITANI  Shigetaka TOMIYA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    527-531

    Internal quantum efficiency (IQE) is usually estimated from temperature dependence of photoluminescence (PL) intensity by assuming that the IQE at cryogenic temperature is unity. III-nitride samples, however, usually have large defect density, and the assumption is not necessarily valid. In 2016, we proposed a new method to estimate accurate IQE values by simultaneous PL and photo-acoustic (PA) measurements, and demonstratively evaluated the IQE values for various GaN samples. In this study, we have applied the method to InGaN quantum-well active layers and have estimated the IQE values and their excitation carrier-density dependence in the layers.

  • Advanced Photonic Crystal Nanocavity Quantum Dot Lasers Open Access

    Yasutomo OTA  Katsuyuki WATANABE  Masahiro KAKUDA  Satoshi IWAMOTO  Yasuhiko ARAKAWA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    553-560

    We discuss our recent progress in photonic crystal nanocavity quantum dot lasers. We show how enhanced light matter interactions in the nanocavity lead to diverse and fascinating lasing phenomena that are in general inaccessible by conventional bulky semiconductor lasers. First, we demonstrate thresholdless lasing, in which any clear kink in the output laser curve does not appear. This is a result of near unity coupling of spontaneous emission into the lasing cavity mode, enabled by the strong Purcell effect supported in the nanocavity. Then, we discuss self-frequency conversion nanolasers, in which both near infrared lasing oscillation and nonlinear optical frequency conversion to visible light are simultaneously supported in the individual nanocavity. Owing to the tight optical confinement both in time and space, a high normalized conversion efficiency over a few hundred %/W is demonstrated. We also show that the intracavity nonlinear frequency conversion can be utilized to measure the statistics of the intracavity photons. These novel phenomena will be useful for developing various nano-optoelectronic devices with advanced functionalities.

  • Compact InP Stokes-Vector Modulator and Receiver Circuits for Short-Reach Direct-Detection Optical Links Open Access

    Takuo TANEMURA  Yoshiaki NAKANO  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    594-601

    To meet the demand for continuous increase in data traffic, full usage of polarization freedom of light is becoming inevitable in the next-generation optical communication and datacenter networks. In particular, Stokes-vector modulation direct-detection (SVM-DD) formats are expected as potentially cost-effective method to transmit multi-level signals without using costly coherent transceivers in the short-reach links. For the SVM-DD formats to be practical, both the transmitter and receiver need to be substantially simpler, smaller, and lower-cost as compared to coherent counterparts. To this end, we have recently proposed and demonstrated novel SV modulator and receiver circuits realized on monolithic InP platforms. With compact non-interferometric configurations, relatively simple fabrication procedures, and compatibility with other active photonic components, the proposed devices should be attractive candidate in realizing low-cost monolithic transceivers for SVM formats. In this paper, we review our approaches as well as recent progresses and provide future prospects.

  • Energy Efficient Resource Selection and Allocation Strategy for Virtual Machine Consolidation in Cloud Datacenters

    Yaohui CHANG  Chunhua GU  Fei LUO  Guisheng FAN  Wenhao FU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/03/30
      Vol:
    E101-D No:7
      Page(s):
    1816-1827

    Virtual Machine Placement (VMP) plays an important role in ensuring efficient resource provisioning of physical machines (PMs) and energy efficiency in Infrastructure as a Service (IaaS) data centers. Efficient server consolidation assisted by virtual machine (VM) migration can promote the utilization level of the servers and switch the idle PMs to sleep mode to save energy. The trade-off between energy and performance is difficult, because consolidation may cause performance degradation, even service level agreement (SLA) violations. A novel residual available capacity (RAC) resource model is proposed to resolve the VM selection and allocation problem from the cloud service provider (CSP) perspective. Furthermore, a novel heuristic VM selection policy for server consolidation, named Minimized Square Root available Resource (MISR) is proposed. Meanwhile, an efficient VM allocation policy, named Balanced Selection (BS) based on RAC is proposed. The effectiveness validation of the BS-MISR combination is conducted on CloudSim with real workloads from the CoMon project. Evaluation results of experiments show that the proposed combinationBS-MISR can significantly reduce the energy consumption, with an average of 36.35% compared to the Local Regression and Minimum Migration Time (LR-MMT) combination policy. Moreover, the BS-MISR ensures a reasonable level of SLAs compared to the benchmarks.

  • An Optimization Algorithm to Build Low Congestion Multi-Ring Topology for Optical Network-on-Chip

    Lijing ZHU  Kun WANG  Duan ZHOU  Liangkai LIU  Huaxi GU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/04/20
      Vol:
    E101-D No:7
      Page(s):
    1835-1842

    Ring-based topology is popular for optical network-on-chip. However, the network congestion is serious for ring topology, especially when optical circuit-switching is employed. In this paper, we proposed an algorithm to build a low congestion multi-ring architecture for optical network-on-chip without additional wavelength or scheduling overhead. A network congestion model is established with new network congestion factor defined. An algorithm is developed to optimize the low congestion multi-ring topology. Finally, a case study is shown and the simulation results by OPNET verify the superiority over the traditional ONoC architecture.

  • Fuzzy Levy-GJR-GARCH American Option Pricing Model Based on an Infinite Pure Jump Process

    Huiming ZHANG  Junzo WATADA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/04/16
      Vol:
    E101-D No:7
      Page(s):
    1843-1859

    This paper focuses mainly on issues related to the pricing of American options under a fuzzy environment by taking into account the clustering of the underlying asset price volatility, leverage effect and stochastic jumps. By treating the volatility as a parabolic fuzzy number, we constructed a Levy-GJR-GARCH model based on an infinite pure jump process and combined the model with fuzzy simulation technology to perform numerical simulations based on the least squares Monte Carlo approach and the fuzzy binomial tree method. An empirical study was performed using American put option data from the Standard & Poor's 100 index. The findings are as follows: under a fuzzy environment, the result of the option valuation is more precise than the result under a clear environment, pricing simulations of short-term options have higher precision than those of medium- and long-term options, the least squares Monte Carlo approach yields more accurate valuation than the fuzzy binomial tree method, and the simulation effects of different Levy processes indicate that the NIG and CGMY models are superior to the VG model. Moreover, the option price increases as the time to expiration of options is extended and the exercise price increases, the membership function curve is asymmetric with an inclined left tendency, and the fuzzy interval narrows as the level set α and the exponent of membership function n increase. In addition, the results demonstrate that the quasi-random number and Brownian Bridge approaches can improve the convergence speed of the least squares Monte Carlo approach.

  • Infants' Pain Recognition Based on Facial Expression: Dynamic Hybrid Descriptions

    Ruicong ZHI  Ghada ZAMZMI  Dmitry GOLDGOF  Terri ASHMEADE  Tingting LI  Yu SUN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/04/20
      Vol:
    E101-D No:7
      Page(s):
    1860-1869

    The accurate assessment of infants' pain is important for understanding their medical conditions and developing suitable treatment. Pediatric studies reported that the inadequate treatment of infants' pain might cause various neuroanatomical and psychological problems. The fact that infants can not communicate verbally motivates increasing interests to develop automatic pain assessment system that provides continuous and accurate pain assessment. In this paper, we propose a new set of pain facial activity features to describe the infants' facial expression of pain. Both dynamic facial texture feature and dynamic geometric feature are extracted from video sequences and utilized to classify facial expression of infants as pain or no pain. For the dynamic analysis of facial expression, we construct spatiotemporal domain representation for texture features and time series representation (i.e. time series of frame-level features) for geometric features. Multiple facial features are combined through both feature fusion and decision fusion schemes to evaluate their effectiveness in infants' pain assessment. Experiments are conducted on the video acquired from NICU infants, and the best accuracy of the proposed pain assessment approaches is 95.6%. Moreover, we find that although decision fusion does not perform better than that of feature fusion, the False Negative Rate of decision fusion (6.2%) is much lower than that of feature fusion (25%).

  • Improve Multichannel Speech Recognition with Temporal and Spatial Information

    Yu ZHANG  Pengyuan ZHANG  Qingwei ZHAO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/04/06
      Vol:
    E101-D No:7
      Page(s):
    1963-1967

    In this letter, we explored the usage of spatio-temporal information in one unified framework to improve the performance of multichannel speech recognition. Generalized cross correlation (GCC) is served as spatial feature compensation, and an attention mechanism across time is embedded within long short-term memory (LSTM) neural networks. Experiments on the AMI meeting corpus show that the proposed method provides a 8.2% relative improvement in word error rate (WER) over the model trained directly on the concatenation of multiple microphone outputs.

  • Pre-Equalizing Electro-Optic Modulator Utilizing Polarization-Reversed Ferro-Electric Crystal Substrate Open Access

    Hiroshi MURATA  Tomohiro OHNO  Takayuki MITSUBO  Atsushi SANADA  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    581-585

    We have proposed and developed new electro-optic modulators for the pre-equalization of signal distortion caused by the optical fiber chromatic dispersion effect. We found that the synthesis of an almost arbitrary impulse response function is obtainable by utilizing an electro-optic modulator composed of a Mach-Zehnder waveguide and travelling-wave electrodes on a ferro-electric material substrate with polarization-reversed structures. In this paper, the operational principle, design and simulation results of the pre-equalization modulator are presented. Some preliminary experimental results are also shown with future prospects.

  • MAP-MRF Estimation Based Weather Radar Visualization

    Suk-Hwan LEE  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/04/10
      Vol:
    E101-D No:7
      Page(s):
    1924-1932

    Real-time weather radar imaging technology is required for generating short-time weather forecasts. Moreover, such technology plays an important role in critical-weather warning systems that are based on vast Doppler weather radar data. In this study, we propose a weather radar imaging method that uses multi-layer contour detection and segmentation based on MAP-MRF estimation. The proposed method consists of three major steps. The first step involves generating reflectivity and velocity data using the Doppler radar in the form of raw data images of sweep unit in the polar coordinate system. Then, contour lines are detected on multi-layers using the adaptive median filter and modified Canny's detector based on curvature consistency. The second step interpolates contours on the Cartesian coordinate system using 3D scattered data interpolation and then segments the contours based on MAP-MRF prediction and the metropolis algorithm for each layer. The final step involves integrating the segmented contour layers and generating PPI images in sweep units. Experimental results show that the proposed method produces a visually improved PPI image in 45% of the time as compared to that for conventional methods.

  • Experimental Tests of a Prototype of IMU-Based Closed-Loop Fuzzy Control System for Mobile FES Cycling with Pedaling Wheelchair

    Takashi WATANABE  Takumi TADANO  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2018/03/30
      Vol:
    E101-D No:7
      Page(s):
    1906-1914

    Rehabilitation training with pedaling wheelchair in combination with functional electrical stimulation (FES) can be effective for decreasing the risk of falling significantly. Automatic adjustment of cycling speed and making a turn without standstill has been desired for practical applications of the training with mobile FES cycling. This study aimed at developing closed-loop control system of cycling speed with the pedaling wheelchair. Considering clinical practical use with no requirement of extensive modifications of the wheelchair, measurement method of cycling speed with inertial motion measurement units (IMUs) was introduced, and fuzzy controller for adjusting stimulation intensity to regulate cycling speed was designed. The developed prototype of closed-loop FES control system achieved appropriately cycling speed for the different target speeds in most of control trials with neurologically intact subjects. In addition, all the control trials of low speed cycling including U-turn achieved maintaining the target speed without standstill. Cycling distance and cycling time increased with the closed-loop control of low cycling speed compensating decreasing of cycling speed caused by muscle fatigue. From these results, the developed closed-loop fuzzy FES control system was suggested to work reliably in mobile FES cycling.

  • Refactoring Opportunity Identification Methodology for Removing Long Method Smells and Improving Code Analyzability

    Panita MEANANEATRA  Songsakdi RONGVIRIYAPANISH  Taweesup APIWATTANAPONG  

     
    PAPER

      Pubricized:
    2018/04/26
      Vol:
    E101-D No:7
      Page(s):
    1766-1779

    An important step for improving software analyzability is applying refactorings during the maintenance phase to remove bad smells, especially the long method bad smell. Long method bad smell occurs most frequently and is a root cause of other bad smells. However, no research has proposed an approach to repeating refactoring identification, suggestion, and application until all long method bad smells have been removed completely without reducing software analyzability. This paper proposes an effective approach to identifying refactoring opportunities and suggesting an effective refactoring set for complete removal of long method bad smell without reducing code analyzability. This approach, called the long method remover or LMR, uses refactoring enabling conditions based on program analysis and code metrics to identify four refactoring techniques and uses a technique embedded in JDeodorant to identify extract method. For effective refactoring set suggestion, LMR uses two criteria: code analyzability level and the number of statements impacted by the refactorings. LMR also uses side effect analysis to ensure behavior preservation. To evaluate LMR, we apply it to the core package of a real world java application. Our evaluation criteria are 1) the preservation of code functionality, 2) the removal rate of long method characteristics, and 3) the improvement on analyzability. The result showed that the methods that apply suggested refactoring sets can completely remove long method bad smell, still have behavior preservation, and have not decreased analyzability. It is concluded that LMR meets the objectives in almost all classes. We also discussed the issues we found during evaluation as lesson learned.

  • Robust Human-Computer Interaction for Unstable Camera Systems

    Hao ZHU  Qing YOU  Wenjie CHEN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/03/26
      Vol:
    E101-D No:7
      Page(s):
    1915-1923

    A lot of vision systems have been embedded in devices around us, like mobile phones, vehicles and UAVs. Many of them still need interactive operations of human users. However, specifying accurate object information could be a challenging task due to video jitters caused by camera shakes and target motions. In this paper, we first collect practical hand drawn bounding boxes on real-life videos which are captured by hand-held cameras and UAV-based cameras. We give a deep look into human-computer interactive operations on unstable images. The collected data shows that human input suffers heavy deviations which are harmful to interaction accuracy. To achieve robust interactions on unstable platforms, we propose a target-focused video stabilization method which utilizes a proposal-based object detector and a tracking-based motion estimation component. This method starts with a single manual click and outputs stabilized video stream in which the specified target stays almost stationary. Our method removes not only camera jitters but also target motions simultaneously, therefore offering an comfortable environment for users to do further interactive operations. The experiments demonstrate that the proposed method effectively eliminates image vibrations and significantly increases human input accuracy.

2721-2740hit(20498hit)