The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

621-640hit(20498hit)

  • Making General Dilution Graphs Robust to Unbalanced-Split Errors on Digital Microfluidic Biochips

    Ikuru YOSHIDA  Shigeru YAMASHITA  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2022/07/26
      Vol:
    E106-A No:2
      Page(s):
    97-105

    Digital Microfluidic Biochips (DMFBs) can execute biochemical experiments very efficiently, and thus they are drawing attention recently. In biochemical experiments on a DMFB, “sample preparation” is an important task to generate a sample droplet with the desired concentration value. We merge/split droplets in a DMFB to perform sample preparation. When we split a droplet into two droplets, the split cannot be done evenly in some cases. By some unbalanced splits, the generated concentration value may have unacceptable errors. This paper shows that we can decrease the impact of errors caused by unbalanced splits if we duplicate some mixing nodes in a given dilution graph for most cases. We then propose an efficient method to transform a dilution graph in order to decrease the impact of errors caused by unbalanced splits. We also present a preliminary experimental result to show the potential of our method.

  • A Visual-Identification Based Forwarding Strategy for Vehicular Named Data Networking

    Minh NGO  Satoshi OHZAHATA  Ryo YAMAMOTO  Toshihiko KATO  

     
    PAPER-Information Network

      Pubricized:
    2022/11/17
      Vol:
    E106-D No:2
      Page(s):
    204-217

    Currently, NDN-based VANETs protocols have several problems with packet overhead of rebroadcasting, control packet, and the accuracy of next-hop selection due to the dynamic topology. To deal with these problems in this paper, we propose a robust and lightweight forwarding protocol in Vehicular ad-hoc Named Data Networking. The concept of our forwarding protocol is adopting a packet-free approach. A vehicle collects its neighbor's visual identification by a pair of cameras (front and rear) to assign a unique visual ID for each node. Based on these IDs, we construct a hop-by-hop FIB-based forwarding strategy effectively. Furthermore, the Face duplication [1] in the wireless environment causes an all-broadcast problem. We add the visual information to Face to distinguish the incoming and outgoing Face to prevent broadcast-storm and make FIB and PIT work more accurate and efficiently. The performance evaluation results focusing on the communication overhead show that our proposal has better results in overall network traffic costs and Interest satisfaction ratio than previous works.

  • Chinese Lexical Sememe Prediction Using CilinE Knowledge

    Hao WANG  Sirui LIU  Jianyong DUAN  Li HE  Xin LI  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Pubricized:
    2022/08/18
      Vol:
    E106-A No:2
      Page(s):
    146-153

    Sememes are the smallest semantic units of human languages, the composition of which can represent the meaning of words. Sememes have been successfully applied to many downstream applications in natural language processing (NLP) field. Annotation of a word's sememes depends on language experts, which is both time-consuming and labor-consuming, limiting the large-scale application of sememe. Researchers have proposed some sememe prediction methods to automatically predict sememes for words. However, existing sememe prediction methods focus on information of the word itself, ignoring the expert-annotated knowledge bases which indicate the relations between words and should value in sememe predication. Therefore, we aim at incorporating the expert-annotated knowledge bases into sememe prediction process. To achieve that, we propose a CilinE-guided sememe prediction model which employs an existing word knowledge base CilinE to remodel the sememe prediction from relational perspective. Experiments on HowNet, a widely used Chinese sememe knowledge base, have shown that CilinE has an obvious positive effect on sememe prediction. Furthermore, our proposed method can be integrated into existing methods and significantly improves the prediction performance. We will release the data and code to the public.

  • Modal Interval Regression Based on Spline Quantile Regression

    Sai YAO  Daichi KITAHARA  Hiroki KURODA  Akira HIRABAYASHI  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2022/07/26
      Vol:
    E106-A No:2
      Page(s):
    106-123

    The mean, median, and mode are usually calculated from univariate observations as the most basic representative values of a random variable. To measure the spread of the distribution, the standard deviation, interquartile range, and modal interval are also calculated. When we analyze continuous relations between a pair of random variables from bivariate observations, regression analysis is often used. By minimizing appropriate costs evaluating regression errors, we estimate the conditional mean, median, and mode. The conditional standard deviation can be estimated if the bivariate observations are obtained from a Gaussian process. Moreover, the conditional interquartile range can be calculated for various distributions by the quantile regression that estimates any conditional quantile (percentile). Meanwhile, the study of the modal interval regression is relatively new, and spline regression models, known as flexible models having the optimality on the smoothness for bivariate data, are not yet used. In this paper, we propose a modal interval regression method based on spline quantile regression. The proposed method consists of two steps. In the first step, we divide the bivariate observations into bins for one random variable, then detect the modal interval for the other random variable as the lower and upper quantiles in each bin. In the second step, we estimate the conditional modal interval by constructing both lower and upper quantile curves as spline functions. By using the spline quantile regression, the proposed method is widely applicable to various distributions and formulated as a convex optimization problem on the coefficient vectors of the lower and upper spline functions. Extensive experiments, including settings of the bin width, the smoothing parameter and weights in the cost function, show the effectiveness of the proposed modal interval regression in terms of accuracy and visual shape for synthetic data generated from various distributions. Experiments for real-world meteorological data also demonstrate a good performance of the proposed method.

  • Critical Location of Communications Network with Power Grid Power Supply Open Access

    Hiroshi SAITO  

     
    PAPER-Network Management/Operation

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    166-173

    When a disaster hits a network, network service disruptions can occur even if the network facilities have survived and battery and power generators are provided. This is because in the event of a disaster, the power supply will not be restarted within the lifetime of the battery or oil transportation will not be restarted before running out of oil and power will be running out. Therefore, taking a power grid into account is important. This paper proposes a polynomial-time algorithm to identify the critical location C*D of a communications network Nc when a disaster hits. Electrical power grid Np supplies power to the nodes of Nc, and a link in Nc is disconnected when a node or a link in Nc or Np fails. Here, the disaster area is modeled as co-centric disks and the failure probability is higher in the inner disk than the outer one. The location of the center of the disaster with the greatest expected number of disconnected links in Nc is taken as the critical location C*D.

  • Radial Line Planar Phased Array Using Electromechanically Rotated Helical Antennas

    Narihiro NAKAMOTO  Yusuke SUZUKI  Satoshi YAMAGUCHI  Toru FUKASAWA  Naofumi YONEDA  Hiroaki MIYASHITA  Naoki SHINOHARA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/08/10
      Vol:
    E106-B No:2
      Page(s):
    174-183

    In this paper, we propose a novel radial line planar phased array in which helical antenna elements are individually rotated by their respective connected micromotors to realize dynamic beam-scanning. To our knowledge, this is the first radial line planar array (RLPA) that has antenna elements electromechanically rotated by their individual micromotors. To facilitate its fabrication, helix and its probe are directly metallized on a plastic shaft using molded interconnect device technology, and a motor shaft is press-fitted into the plastic shaft. We also present a new design methodology for RLPA, which combines the equivalent circuit theory and electromagnetic simulations of the unit cell element. The proposed procedure is practical to design an RLPA of antenna elements with arbitrary probe shape without large-scale full-wave analysis of the whole structure of the RLPA. We design, fabricate, and evaluate a 7-circle array with 168 helical antenna elements fabricated using molded interconnect device technology. The prototype antenna exhibits dynamic and accurate beam-scanning performance. Furthermore, the prototype antenna exhibits a low reflection coefficient (less than -17dB) and high antenna efficiency (above 77%), which validates the proposed design methodology.

  • Suppression Effect of Randomly-Disturbed LC Alignment Fluctuation on Speckle Noise for Electronic Holography Imaging Open Access

    Masatoshi YAITA  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    INVITED PAPER

      Pubricized:
    2022/09/08
      Vol:
    E106-C No:2
      Page(s):
    26-33

    In this paper, we proposed the phase disturbing device using randomly-fluctuated liquid crystal (LC) alignment to reduce the speckle noise generated in holographic displays. Some parameters corresponding to the alignment fluctuation of thick LC layer were quantitatively evaluated, and we clarified the effect of the LC alignment fluctuation with the parameters on speckle noise reduction.

  • Commit-Based Class-Level Defect Prediction for Python Projects

    Khine Yin MON  Masanari KONDO  Eunjong CHOI  Osamu MIZUNO  

     
    PAPER

      Pubricized:
    2022/11/14
      Vol:
    E106-D No:2
      Page(s):
    157-165

    Defect prediction approaches have been greatly contributing to software quality assurance activities such as code review or unit testing. Just-in-time defect prediction approaches are developed to predict whether a commit is a defect-inducing commit or not. Prior research has shown that commit-level prediction is not enough in terms of effort, and a defective commit may contain both defective and non-defective files. As the defect prediction community is promoting fine-grained granularity prediction approaches, we propose our novel class-level prediction, which is finer-grained than the file-level prediction, based on the files of the commits in this research. We designed our model for Python projects and tested it with ten open-source Python projects. We performed our experiment with two settings: setting with product metrics only and setting with product metrics plus commit information. Our investigation was conducted with three different classifiers and two validation strategies. We found that our model developed by random forest classifier performs the best, and commit information contributes significantly to the product metrics in 10-fold cross-validation. We also created a commit-based file-level prediction for the Python files which do not have the classes. The file-level model also showed a similar condition as the class-level model. However, the results showed a massive deviation in time-series validation for both levels and the challenge of predicting Python classes and files in a realistic scenario.

  • Superposition Signal Input Decoding for Lattice Reduction-Aided MIMO Receivers Open Access

    Satoshi DENNO  Koki KASHIHARA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/01
      Vol:
    E106-B No:2
      Page(s):
    184-192

    This paper proposes a novel approach to low complexity soft input decoding for lattice reduction-aided MIMO receivers. The proposed approach feeds a soft input decoder with soft signals made from hard decision signals generated by using a lattice reduction-aided linear detector. The soft signal is a weighted-sum of some candidate vectors that are near by the hard decision signal coming out from the lattice reduction-aided linear detector. This paper proposes a technique to adjust the weight adapt to the channel for the higher transmission performance. Furthermore, we propose to introduce a coefficient that is used for the weights in order to enhance the transmission performance. The transmission performance is evaluated in a 4×4 MIMO channel. When a linear MMSE filter or a serial interference canceller is used as the linear detector, the proposed technique achieves about 1.0dB better transmission performance at the BER of 10-5 than the decoder fed with the hard decision signals. In addition, the low computational complexity of the proposed technique is quantitatively evaluated.

  • Spatial-Temporal Aggregated Shuffle Attention for Video Instance Segmentation of Traffic Scene

    Chongren ZHAO  Yinhui ZHANG  Zifen HE  Yunnan DENG  Ying HUANG  Guangchen CHEN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/11/24
      Vol:
    E106-D No:2
      Page(s):
    240-251

    Aiming at the problem of spatial focus regions distribution dispersion and dislocation in feature pyramid networks and insufficient feature dependency acquisition in both spatial and channel dimensions, this paper proposes a spatial-temporal aggregated shuffle attention for video instance segmentation (STASA-VIS). First, an mixed subsampling (MS) module to embed activating features from the low-level target area of feature pyramid into the high-level is designed, so as to aggregate spatial information on target area. Taking advantage of the coherent information in video frames, STASA-VIS uses the first ones of every 5 video frames as the key-frames and then propagates the keyframe feature maps of the pyramid layers forward in the time domain, and fuses with the non-keyframe mixed subsampled features to achieve time-domain consistent feature aggregation. Finally, STASA-VIS embeds shuffle attention in the backbone to capture the pixel-level pairwise relationship and dimensional dependencies among the channels and reduce the computation. Experimental results show that the segmentation accuracy of STASA-VIS reaches 41.2%, and the test speed reaches 34FPS, which is better than the state-of-the-art one stage video instance segmentation (VIS) methods in accuracy and achieves real-time segmentation.

  • Comparative Evaluation of Diverse Features in Fluency Evaluation of Spontaneous Speech

    Huaijin DENG  Takehito UTSURO  Akio KOBAYASHI  Hiromitsu NISHIZAKI  

     
    PAPER-Speech and Hearing

      Pubricized:
    2022/10/25
      Vol:
    E106-D No:1
      Page(s):
    36-45

    There have been lots of previous studies on fluency evaluation of spontaneous speech. However, most of them focus on lexical cues, and little emphasis is placed on how diverse acoustic features and deep end-to-end models contribute to improving the performance. In this paper, we describe multi-layer neural network to investigate not only lexical features extracted from transcription, but also consider utterance-level acoustic features from audio data. We also conduct the experiments to investigate the performance of end-to-end approaches with mel-spectrogram in this task. As the speech fluency evaluation task, we evaluate our proposed method in two binary classification tasks of fluent speech detection and disfluent speech detection. Speech data of around 10 seconds duration each with the annotation of the three classes of “fluent,” “neutral,” and “disfluent” is used for evaluation. According to the two way splits of those three classes, the task of fluent speech detection is defined as binary classification of fluent vs. neutral and disfluent, while that of disfluent speech detection is defined as binary classification of fluent and neutral vs. disfluent. We then conduct experiments with the purpose of comparative evaluation of multi-layer neural network with diverse features as well as end-to-end models. For the fluent speech detection, in the comparison of utterance-level disfluency-based, prosodic, and acoustic features with multi-layer neural network, disfluency-based and prosodic features only are better. More specifically, the performance improved a lot when removing all of the acoustic features from the full set of features, while the performance is damaged a lot if fillers related features are removed. Overall, however, the end-to-end Transformer+VGGNet model with mel-spectrogram achieves the best results. For the disfluent speech detection, the multi-layer neural network using disfluency-based, prosodic, and acoustic features without fillers achieves the best results. The end-to-end Transformer+VGGNet architecture also obtains high scores, whereas it is exceeded by the best results with the multi-layer neural network with significant difference. Thus, unlike in the fluent speech detection, disfluency-based and prosodic features other than fillers are still necessary in the disfluent speech detection.

  • Face Image Generation of Anime Characters Using an Advanced First Order Motion Model with Facial Landmarks

    Junki OSHIBA  Motoi IWATA  Koichi KISE  

     
    PAPER

      Pubricized:
    2022/10/12
      Vol:
    E106-D No:1
      Page(s):
    22-30

    Recently, deep learning for image generation with a guide for the generation has been progressing. Many methods have been proposed to generate the animation of facial expression change from a single face image by transferring some facial expression information to the face image. In particular, the method of using facial landmarks as facial expression information can generate a variety of facial expressions. However, most methods do not focus on anime characters but humans. Moreover, we attempted to apply several existing methods to anime characters by training the methods on an anime character face dataset; however, they generated images with noise, even in regions where there was no change. The first order motion model (FOMM) is an image generation method that takes two images as input and transfers one facial expression or pose to the other. By explicitly calculating the difference between the two images based on optical flow, FOMM can generate images with low noise in the unchanged regions. In the following, we focus on the aspect of the face image generation in FOMM. When we think about the employment of facial landmarks as targets, the performance of FOMM is not enough because FOMM cannot use a facial landmark as a facial expression target because the appearances of a face image and a facial landmark are quite different. Therefore, we propose an advanced FOMM method to use facial landmarks as a facial expression target. In the proposed method, we change the input data and data flow to use facial landmarks. Additionally, to generate face images with expressions that follow the target landmarks more closely, we introduce the landmark estimation loss, which is computed by comparing the landmark detected from the generated image with the target landmark. Our experiments on an anime character face image dataset demonstrated that our method is effective for landmark-guided face image generation for anime characters. Furthermore, our method outperformed other methods quantitatively and generated face images with less noise.

  • Projection-Based Physical Adversarial Attack for Monocular Depth Estimation

    Renya DAIMO  Satoshi ONO  

     
    LETTER

      Pubricized:
    2022/10/17
      Vol:
    E106-D No:1
      Page(s):
    31-35

    Monocular depth estimation has improved drastically due to the development of deep neural networks (DNNs). However, recent studies have revealed that DNNs for monocular depth estimation contain vulnerabilities that can lead to misestimation when perturbations are added to input. This study investigates whether DNNs for monocular depth estimation is vulnerable to misestimation when patterned light is projected on an object using a video projector. To this end, this study proposes an evolutionary adversarial attack method with multi-fidelity evaluation scheme that allows creating adversarial examples under black-box condition while suppressing the computational cost. Experiments in both simulated and real scenes showed that the designed light pattern caused a DNN to misestimate objects as if they have moved to the back.

  • Face Hallucination via Multi-Scale Structure Prior Learning

    Yuexi YAO  Tao LU  Kanghui ZHAO  Yanduo ZHANG  Yu WANG  

     
    LETTER-Image

      Pubricized:
    2022/07/19
      Vol:
    E106-A No:1
      Page(s):
    92-96

    Recently, the face hallucination method based on deep learning understands the mapping between low-resolution (LR) and high-resolution (HR) facial patterns by exploring the priors of facial structure. However, how to maintain the face structure consistency after the reconstruction of face images at different scales is still a challenging problem. In this letter, we propose a novel multi-scale structure prior learning (MSPL) for face hallucination. First, we propose a multi-scale structure prior block (MSPB). Considering the loss of high-frequency information in the LR space, we mainly process the input image in three different scale ascending dimensional spaces, and map the image to the high dimensional space to extract multi-scale structural prior information. Then the size of feature maps is recovered by downsampling, and finally the multi-scale information is fused to restore the feature channels. On this basis, we propose a local detail attention module (LDAM) to focus on the local texture information of faces. We conduct extensive face hallucination reconstruction experiments on a public face dataset (LFW) to verify the effectiveness of our method.

  • CAA-Net: End-to-End Two-Branch Feature Attention Network for Single Image Dehazing

    Gang JIN  Jingsheng ZHAI  Jianguo WEI  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/07/21
      Vol:
    E106-A No:1
      Page(s):
    1-10

    In this paper, we propose an end-to-end two-branch feature attention network. The network is mainly used for single image dehazing. The network consists of two branches, we call it CAA-Net: 1) A U-NET network composed of different-level feature fusion based on attention (FEPA) structure and residual dense block (RDB). In order to make full use of all the hierarchical features of the image, we use RDB. RDB contains dense connected layers and local feature fusion with local residual learning. We also propose a structure which called FEPA.FEPA structure could retain the information of shallow layer and transfer it to the deep layer. FEPA is composed of serveral feature attention modules (FPA). FPA combines local residual learning with channel attention mechanism and pixel attention mechanism, and could extract features from different channels and image pixels. 2) A network composed of several different levels of FEPA structures. The network could make feature weights learn from FPA adaptively, and give more weight to important features. The final output result of CAA-Net is the combination of all branch prediction results. Experimental results show that the CAA-Net proposed by us surpasses the most advanced algorithms before for single image dehazing.

  • A Non-Intrusive Speech Quality Evaluation Method Based on the Audiogram and Weighted Frequency Information for Hearing Aid

    Ruxue GUO  Pengxu JIANG  Ruiyu LIANG  Yue XIE  Cairong ZOU  

     
    LETTER-Speech and Hearing

      Pubricized:
    2022/07/25
      Vol:
    E106-A No:1
      Page(s):
    64-68

    For a long time, the compensation effect of hearing aid is mainly evaluated subjectively, and there are fewer studies of objective evaluation. Furthermore, a pure speech signal is generally required as a reference in the existing objective evaluation methods, which restricts the practicality in a real-world environment. Therefore, this paper presents a non-intrusive speech quality evaluation method for hearing aid, which combines the audiogram and weighted frequency information. The proposed model mainly includes an audiogram information extraction network, a frequency information extraction network, and a quality score mapping network. The audiogram is the input of the audiogram information extraction network, which helps the system capture the information related to hearing loss. In addition, the low-frequency bands of speech contain loudness information and the medium and high-frequency components contribute to semantic comprehension. The information of two frequency bands is input to the frequency information extraction network to obtain time-frequency information. When obtaining the high-level features of different frequency bands and audiograms, they are fused into two groups of tensors that distinguish the information of different frequency bands and used as the input of the attention layer to calculate the corresponding weight distribution. Finally, a dense layer is employed to predict the score of speech quality. The experimental results show that it is reasonable to combine the audiogram and the weight of the information from two frequency bands, which can effectively realize the evaluation of the speech quality of the hearing aid.

  • Image and Model Transformation with Secret Key for Vision Transformer

    Hitoshi KIYA  Ryota IIJIMA  Aprilpyone MAUNGMAUNG  Yuma KINOSHITA  

     
    INVITED PAPER

      Pubricized:
    2022/11/02
      Vol:
    E106-D No:1
      Page(s):
    2-11

    In this paper, we propose a combined use of transformed images and vision transformer (ViT) models transformed with a secret key. We show for the first time that models trained with plain images can be directly transformed to models trained with encrypted images on the basis of the ViT architecture, and the performance of the transformed models is the same as models trained with plain images when using test images encrypted with the key. In addition, the proposed scheme does not require any specially prepared data for training models or network modification, so it also allows us to easily update the secret key. In an experiment, the effectiveness of the proposed scheme is evaluated in terms of performance degradation and model protection performance in an image classification task on the CIFAR-10 dataset.

  • Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov Random Fields

    Tatsuya KOYAKUMARU  Masahiro YUKAWA  Eduardo PAVEZ  Antonio ORTEGA  

     
    PAPER-Graphs and Networks

      Pubricized:
    2022/07/01
      Vol:
    E106-A No:1
      Page(s):
    23-34

    This paper presents a convex-analytic framework to learn sparse graphs from data. While our problem formulation is inspired by an extension of the graphical lasso using the so-called combinatorial graph Laplacian framework, a key difference is the use of a nonconvex alternative to the l1 norm to attain graphs with better interpretability. Specifically, we use the weakly-convex minimax concave penalty (the difference between the l1 norm and the Huber function) which is known to yield sparse solutions with lower estimation bias than l1 for regression problems. In our framework, the graph Laplacian is replaced in the optimization by a linear transform of the vector corresponding to its upper triangular part. Via a reformulation relying on Moreau's decomposition, we show that overall convexity is guaranteed by introducing a quadratic function to our cost function. The problem can be solved efficiently by the primal-dual splitting method, of which the admissible conditions for provable convergence are presented. Numerical examples show that the proposed method significantly outperforms the existing graph learning methods with reasonable computation time.

  • Global Asymptotic Stabilization of Feedforward Systems with an Uncertain Delay in the Input by Event-Triggered Control

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2022/06/28
      Vol:
    E106-A No:1
      Page(s):
    69-72

    In this letter, we consider a global stabilization problem for a class of feedforward systems by an event-triggered control. This is an extended work of [10] in a way that there are uncertain feedforward nonlinearity and time-varying input delay in the system. First, we show that the considered system is globally asymptotically stabilized by a proposed event-triggered controller with a gain-scaling factor. Then, we also show that the interexecution times can be enlarged by adjusting a gain-scaling factor. A simulation example is given for illustration.

  • Constructions of Optimal Single-Parity Locally Repairable Codes with Multiple Repair Sets

    Yang DING  Qingye LI  Yuting QIU  

     
    LETTER-Coding Theory

      Pubricized:
    2022/08/03
      Vol:
    E106-A No:1
      Page(s):
    78-82

    Locally repairable codes have attracted lots of interest in Distributed Storage Systems. If a symbol of a code can be repaired respectively by t disjoint groups of other symbols, each groups has size at most r, we say that the code symbol has (r, t)-locality. In this paper, we employ parity-check matrix to construct information single-parity (r, t)-locality LRCs. All our codes attain the Singleton-like bound of LRCs where each repair group contains a single parity symbol and thus are optimal.

621-640hit(20498hit)