Kosuke MATSUDA Kazuhisa SETA Yuki HAYASHI
Self-directed learning in an appropriately designed environment can help learners retain knowledge tied to experience and motivate them to learn more. For teachers, however, it is difficult to design an environment to give to learners and to give feedback that reflects respect for their independent efforts, while for learners, it is difficult to set learning objectives on their own and to construct knowledge correctly based on their own efforts. In this research, we developed a learning support system that provides a mechanism for constructing an observational learning environment using virtual space and that encourages self-directed knowledge discovery. We confirmed that this system contributes to a learner's structural understanding and its retention and to a greater desire to learn at a level comparable to that of concept map creation, another active learning method.
Kohei YAMAGUCHI Yusuke HAYASHI Tsukasa HIRASHIMA
This study focuses on creating arithmetical stories as a sub-task of problem posing and proposes a game named “Tri-prop scrabble” as a learning environment based on a fusion method of learning and game. The problem-posing ability has a positive relationship with mathematics achievement and understanding the mathematical structure of problems. In the proposed game, learners are expected to experience creating and concatenating various arithmetical stories by integrating simple sentences. The result of a preliminary feasibility study shows that the participants were able to pose and concatenate a variety of types of arithmetic stories and accept this game is helpful for learning arithmetic word problems.
This paper focuses on the potential value and future prospects of using virtual reality (VR) technology in online education. In detailing online education and the latest VR technology, we focus on metaverse construction and artificial intelligence (AI) for educational VR use. In particular, we describe a virtual university campus in which on-demand VR lectures are conducted in virtual lecture halls, automated evaluations of student learning and training using machine learning, and the linking of multiple digital campuses.
Masaki HAMAMOTO Hiroyuki NAMBA Masashi EGI
Explainable artificial intelligence (AI) technology enables us to quantitatively analyze the whole prediction logic of AI as a global explanation. However, unwanted relationships learned by AI due to data sparsity, high dimensionality, and noise are also visualized in the explanation, which deteriorates confidence in the AI. Thus, methods for correcting those unwanted relationships in explanation has been developed. However, since these methods are applicable only to differentiable machine learning (ML) models but not to non-differentiable models such as tree-based models, they are insufficient for covering a wide range of ML technology. Since these methods also require re-training of the model for correcting its explanation (i.e., in-processing method), they cannot be applied to black-box models provided by third parties. Therefore, we propose a method called ensemble-based explanation correction (EBEC) as a post-processing method for correcting the global explanation of a prediction model in a model-agnostic manner by using the Rashomon effect of statistics. We evaluated the performance of EBEC with three different tasks and analyzed its function in more detail. The evaluation results indicate that EBEC can correct global explanation of the model so that the explanation aligns with the domain knowledge given by the user while maintaining its accuracy. EBEC can be extended in various ways and combined with any method to improve correction performance since it is a post-processing-type correction method. Hence, EBEC would contribute to high-productivity ML modeling as a new type of explanation-correction method.
Naoya MURAMATSU Hai-Tao YU Tetsuji SATOH
With the continued innovation of deep neural networks, spiking neural networks (SNNs) that more closely resemble biological brain synapses have attracted attention because of their low power consumption. Unlike artificial neural networks (ANNs), for continuous data values, they must employ an encoding process to convert the values to spike trains, suppressing the SNN's performance. To avoid this degradation, the incoming analog signal must be regulated prior to the encoding process, which is also realized in living things eg, the basement membranes of humans mechanically perform the Fourier transform. To this end, we combine an ANN and an SNN to build ANN-to-SNN hybrid neural networks (HNNs) that improve the concerned performance. To qualify this performance and robustness, MNIST and CIFAR-10 image datasets are used for various classification tasks in which the training and encoding methods changes. In addition, we present simultaneous and separate training methods for the artificial and spiking layers, considering the encoding methods of each. We find that increasing the number of artificial layers at the expense of spiking layers improves the HNN performance. For straightforward datasets such as MNIST, similar performances as ANN's are achieved by using duplicate coding and separate learning. However, for more complex tasks, the use of Gaussian coding and simultaneous learning is found to improve the accuracy of the HNN while lower power consumption.
Yuto KIHIRA Yusuke KODA Koji YAMAMOTO Takayuki NISHIO
Broadcast services for wireless local area networks (WLANs) are being standardized in the IEEE 802.11 task group bc. Envisaging the upcoming coexistence of broadcast access points (APs) with densely-deployed legacy APs, this paper addresses a learning-based spatial reuse with only partial receiver-awareness. This partial awareness means that the broadcast APs can leverage few acknowledgment frames (ACKs) from recipient stations (STAs). This is in view of the specific concerns of broadcast communications. In broadcast communications for a very large number of STAs, ACK implosions occur unless some STAs are stopped from responding with ACKs. Given this, the main contribution of this paper is to demonstrate the feasibility to improve the robustness of learning-based spatial reuse to hidden interferers only with the partial receiver-awareness while discarding any re-training of broadcast APs. The core idea is to leverage robust adversarial reinforcement learning (RARL), where before a hidden interferer is installed, a broadcast AP learns a rate adaptation policy in a competition with a proxy interferer that provides jamming signals intelligently. Therein, the recipient STAs experience interference and the partial STAs provide a feedback overestimating the effect of interference, allowing the broadcast AP to select a data rate to avoid frame losses in a broad range of recipient STAs. Simulations demonstrate the suppression of the throughput degradation under a sudden installation of a hidden interferer, indicating the feasibility of acquiring robustness to the hidden interferer.
Mamoru UGAJIN Yuya KAKEI Nobuyuki ITOH
Quadrature voltage-controlled oscillators (VCOs) with current-weight-average and voltage-weight-average phase-adjusting architectures are studied. The phase adjusting equalizes the oscillation frequency to the LC-resonant frequency. The merits of the equalization are explained by using Leeson's phase noise equation and the impulse sensitivity function (ISF). Quadrature VCOs with the phase-adjusting architectures are fabricated using 180-nm TSMC CMOS and show low-phase-noise performances compared to a conventional differential VCO. The ISF analysis and small-signal analysis also show that the drawbacks of the current-weight-average phase-adjusting and voltage-weight-average phase-adjusting architectures are current-source noise effect and large additional capacitance, respectively. A voltage-average-adjusting circuit with a source follower at its input alleviates the capacitance increase.
Mobile communication systems are not only the core of the Information and Communication Technology (ICT) infrastructure but also that of our social infrastructure. The 5th generation mobile communication system (5G) has already started and is in use. 5G is expected for various use cases in industry and society. Thus, many companies and research institutes are now trying to improve the performance of 5G, that is, 5G Enhancement and the next generation of mobile communication systems (Beyond 5G (6G)). 6G is expected to meet various highly demanding requirements even compared with 5G, such as extremely high data rate, extremely large coverage, extremely low latency, extremely low energy, extremely high reliability, extreme massive connectivity, and so on. Artificial intelligence (AI) and machine learning (ML), AI/ML, will have more important roles than ever in 6G wireless communications with the above extreme high requirements for a diversity of applications, including new combinations of the requirements for new use cases. We can say that AI/ML will be essential for 6G wireless communications. This paper introduces some ML techniques and applications in 6G wireless communications, mainly focusing on the physical layer.
Makoto OMODANI Hiroyuki YAGUCHI Fusako KUSUNOKI
We have proposed and developed e-Tile for wall decoration and ornaments for interior/exterior. A prototype of 2m×2m large energy-saving reflective panel was realized by arraying 400 e-Tiles on a flat plane. Prototypes of cubic displays were also realized by constructing e-Tiles to cubic shape. Artistic display effects and 3D impression could be found in these cubic prototypes. We hope e-Tile is a promising solution to extend the application field of e-Paper to decorative use including architectural applications.
Deep neural networks (DNNs) perform well for image recognition, speech recognition, and pattern analysis. However, such neural networks are vulnerable to adversarial examples. An adversarial example is a data sample created by adding a small amount of noise to an original sample in such a way that it is difficult for humans to identify but that will cause the sample to be misclassified by a target model. In a military environment, adversarial examples that are correctly classified by a friendly model while deceiving an enemy model may be useful. In this paper, we propose a method for generating a selective adversarial example that is correctly classified by a friendly gait recognition system and misclassified by an enemy gait recognition system. The proposed scheme generates the selective adversarial example by combining the loss for correct classification by the friendly gait recognition system with the loss for misclassification by the enemy gait recognition system. In our experiments, we used the CASIA Gait Database as the dataset and TensorFlow as the machine learning library. The results show that the proposed method can generate selective adversarial examples that have a 98.5% attack success rate against an enemy gait recognition system and are classified with 87.3% accuracy by a friendly gait recognition system.
Ze Fu GAO Hai Cheng TAO Qin Yu ZHU Yi Wen JIAO Dong LI Fei Long MAO Chao LI Yi Tong SI Yu Xin WANG
Aiming at the problem of non-line of sight (NLOS) signal recognition for Ultra Wide Band (UWB) positioning, we utilize the concepts of Neural Network Clustering and Neural Network Pattern Recognition. We propose a classification algorithm based on self-organizing feature mapping (SOM) neural network batch processing, and a recognition algorithm based on convolutional neural network (CNN). By assigning different weights to learning, training and testing parts in the data set of UWB location signals with given known patterns, a strong NLOS signal recognizer is trained to minimize the recognition error rate. Finally, the proposed NLOS signal recognition algorithm is verified using data sets from real scenarios. The test results show that the proposed algorithm can solve the problem of UWB NLOS signal recognition under strong signal interference. The simulation results illustrate that the proposed algorithm is significantly more effective compared with other algorithms.
Hideaki TSUGITA Satoshi DENNO Yafei HOU
This paper proposes multi-input physical layer network coding (multi-input PLNC) for high speed wireless communication in two-dimensional wireless multihop networks. In the proposed PLNC, all the terminals send their packets simultaneously for the neighboring relays to maximize the network throughput in the first slot, and all the relays also do the same to the neighboring terminals in the second slot. Those simultaneous signal transmissions cause multiple signals to be received at the relays and the terminals. Signal reception in the multi-input PLNC uses multichannel filtering to mitigate the difficulties caused by the multiple signal reception, which enables the two-input PLNC to be applied. In addition, a non-linear precoding is proposed to reduce the computational complexity of the signal detection at the relays and the terminals. The proposed multi-input PLNC makes all the terminals exchange their packets with the neighboring terminals in only two time slots. The performance of the proposed multi-input PLNC is confirmed by computer simulation. The proposed multi-input physical layer network coding achieves much higher network throughput than conventional techniques in a two-dimensional multihop wireless network with 7 terminals. The proposed multi-input physical layer network coding attains superior transmission performance in wireless hexagonal multihop networks, as long as more than 6 antennas are placed on the terminals and the relays.
Katsuhiko ISHIKAWA Taro MURAKAMI Mikiya TANIGUCHI
This study examined whether distance learning in a first-year PBL courses in the first unit of instruction improves the effectiveness of subsequent group work learning over face-to-face learning. The first-year PBL consisted of three units: an input unit, a group work unit and an outcomes presentation unit. In 2017/2018, the input unit was conducted in the classroom with face-to-face learning. In 2017, a workshop was held in addition to face-to-face learning in classroom. In 2020/2021, the input unit was conducted with distance learning. In the years, approximately 100 people completed the questionnaire. A preliminary check confirmed that the average score of students' self-assessment of their own social skills were not significantly different among the four years. Analysis showed that in 2018, the perceived efficacy in the group work unit depended on learners' high social skills. Alternatively, in 2017/2020/2021, the perceived efficacy in group work was not dependent on learners' social skills. This suggests that distance learning and face-to-face learning with workshop learning, instead of full face-to-face learning for the units placed before the group work unit facilitates the learning efficacy of the group work unit, even for students with social skill concerns.
Michinori HONMA Takashi SASE Ryota ITO Toshiaki NOSE
In this study, we have proposed a millimeter-wave (MMW) single-pixel imaging (SPI) system with a liquid-crystal (LC) mask cell. The LC cell functions as an electrically switchable mask based on the change in absorption properties, which depend on the orientation of the LC. We investigated the influence of noise on the measured and estimated data (reconstructed image). The proposed system exhibited moderate robustness against random noise (that were added) compared to raster scan-based and Hadamard matrix-based SPI systems. Finally, the results of some demonstrative experiments were introduced to ensure the applicability of the constructed MMW-SPI system, and steps for improving the reconstructed image quality were discussed.
Hiroaki OGATA Rwitajit MAJUMDAR Brendan FLANAGAN
During the COVID-19 pandemic there was a rapid shift to emergency remote teaching practices and online tools for education have already gained further attention. While eLearning initiatives are developed and its implementation at scale are widely discussed, this research focuses on the utilization of data which can be logged in such eLearning systems. We demonstrate the need and potential of utilizing learning logs to create services supporting sustainable quality improvement of education. Learning and Evidence Analytics Framework (LEAF), is the overarching technology framework with affordances to adopt evidence-based practices for education. It aims to promote learning for all by introducing data-driven services for personalized approaches.
Issei MAKINO Junji TERAI Nobuhiko MIKI
Local (private) 5G system can provide a secure and flexible network using the cellular-based technologies at their facilities (e.g., factories, agricultural lands, and buildings). We constructed a small-scale demonstration system that exhibits the remote control of a patrol and work robot with arms using a local 5G system. The constructed robot comprises a robot operating system-based unmanned ground vehicle, two laser range finders, a webcam, an omnidirectional camera, and a six-axis robot arm. To fabricate a demonstration system with open-source software, we assessed the one-way delay of video streaming by changing different CPU, camera types, drivers, applications, and video resolutions. According to the assessment findings, it was demonstrated that it is possible to realize approximately 100ms delay under the limited resolution condition, and the allowable maximum absolute delay of 300ms can be attained even for full HD (1920 × 1080) resolution of this demonstration. Furthermore, local 5G was demonstrated to reduce delay variations to the same level as wired systems. It was also clarified that the increase in delay due to the application of local 5G is relatively small (5-25% in total delay) in this demonstration. Finally, we employed the small-scale demonstration system for the online and onsite campus tours for high school students.
Ikuru YOSHIDA Shigeru YAMASHITA
Digital Microfluidic Biochips (DMFBs) can execute biochemical experiments very efficiently, and thus they are drawing attention recently. In biochemical experiments on a DMFB, “sample preparation” is an important task to generate a sample droplet with the desired concentration value. We merge/split droplets in a DMFB to perform sample preparation. When we split a droplet into two droplets, the split cannot be done evenly in some cases. By some unbalanced splits, the generated concentration value may have unacceptable errors. This paper shows that we can decrease the impact of errors caused by unbalanced splits if we duplicate some mixing nodes in a given dilution graph for most cases. We then propose an efficient method to transform a dilution graph in order to decrease the impact of errors caused by unbalanced splits. We also present a preliminary experimental result to show the potential of our method.
Minh NGO Satoshi OHZAHATA Ryo YAMAMOTO Toshihiko KATO
Currently, NDN-based VANETs protocols have several problems with packet overhead of rebroadcasting, control packet, and the accuracy of next-hop selection due to the dynamic topology. To deal with these problems in this paper, we propose a robust and lightweight forwarding protocol in Vehicular ad-hoc Named Data Networking. The concept of our forwarding protocol is adopting a packet-free approach. A vehicle collects its neighbor's visual identification by a pair of cameras (front and rear) to assign a unique visual ID for each node. Based on these IDs, we construct a hop-by-hop FIB-based forwarding strategy effectively. Furthermore, the Face duplication [1] in the wireless environment causes an all-broadcast problem. We add the visual information to Face to distinguish the incoming and outgoing Face to prevent broadcast-storm and make FIB and PIT work more accurate and efficiently. The performance evaluation results focusing on the communication overhead show that our proposal has better results in overall network traffic costs and Interest satisfaction ratio than previous works.
Hao WANG Sirui LIU Jianyong DUAN Li HE Xin LI
Sememes are the smallest semantic units of human languages, the composition of which can represent the meaning of words. Sememes have been successfully applied to many downstream applications in natural language processing (NLP) field. Annotation of a word's sememes depends on language experts, which is both time-consuming and labor-consuming, limiting the large-scale application of sememe. Researchers have proposed some sememe prediction methods to automatically predict sememes for words. However, existing sememe prediction methods focus on information of the word itself, ignoring the expert-annotated knowledge bases which indicate the relations between words and should value in sememe predication. Therefore, we aim at incorporating the expert-annotated knowledge bases into sememe prediction process. To achieve that, we propose a CilinE-guided sememe prediction model which employs an existing word knowledge base CilinE to remodel the sememe prediction from relational perspective. Experiments on HowNet, a widely used Chinese sememe knowledge base, have shown that CilinE has an obvious positive effect on sememe prediction. Furthermore, our proposed method can be integrated into existing methods and significantly improves the prediction performance. We will release the data and code to the public.
Sai YAO Daichi KITAHARA Hiroki KURODA Akira HIRABAYASHI
The mean, median, and mode are usually calculated from univariate observations as the most basic representative values of a random variable. To measure the spread of the distribution, the standard deviation, interquartile range, and modal interval are also calculated. When we analyze continuous relations between a pair of random variables from bivariate observations, regression analysis is often used. By minimizing appropriate costs evaluating regression errors, we estimate the conditional mean, median, and mode. The conditional standard deviation can be estimated if the bivariate observations are obtained from a Gaussian process. Moreover, the conditional interquartile range can be calculated for various distributions by the quantile regression that estimates any conditional quantile (percentile). Meanwhile, the study of the modal interval regression is relatively new, and spline regression models, known as flexible models having the optimality on the smoothness for bivariate data, are not yet used. In this paper, we propose a modal interval regression method based on spline quantile regression. The proposed method consists of two steps. In the first step, we divide the bivariate observations into bins for one random variable, then detect the modal interval for the other random variable as the lower and upper quantiles in each bin. In the second step, we estimate the conditional modal interval by constructing both lower and upper quantile curves as spline functions. By using the spline quantile regression, the proposed method is widely applicable to various distributions and formulated as a convex optimization problem on the coefficient vectors of the lower and upper spline functions. Extensive experiments, including settings of the bin width, the smoothing parameter and weights in the cost function, show the effectiveness of the proposed modal interval regression in terms of accuracy and visual shape for synthetic data generated from various distributions. Experiments for real-world meteorological data also demonstrate a good performance of the proposed method.