The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

881-900hit(20498hit)

  • Error Rate Performance Analysis of M-ary Coherent FSO Communications with Spatial Diversity in Strong Atmospheric Turbulence

    Jinkyu KANG  Seongah JEONG  Hoojin LEE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/10/28
      Vol:
    E105-A No:5
      Page(s):
    897-900

    In this letter, we analyze the error rate performance of M-ary coherent free-space optical (FSO) communications under strong atmospheric turbulence. Specifically, we derive the exact error rates for M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) based on moment-generating function (MGF) with negative exponential distributed turbulence, where maximum ratio combining (MRC) receiver is adopted to mitigate the turbulence effects. Additionally, by evaluating the asymptotic error rate in high signal-to-noise ratio (SNR) regime, it is possible to effectively investigate and predict the error rate performance for various system configurations. The accuracy and the effectiveness of our theoretical analyses are verified via numerical results.

  • Fully Connected Imaging Network for Near-Field Synthetic Aperture Interferometric Radiometer

    Zhimin GUO  Jianfei CHEN  Sheng ZHANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/02/09
      Vol:
    E105-D No:5
      Page(s):
    1120-1124

    Millimeter wave synthetic aperture interferometric radiometers (SAIR) are very powerful instruments, which can effectively realize high-precision imaging detection. However due to the existence of interference factor and complex near-field error, the imaging effect of near-field SAIR is usually not ideal. To achieve better imaging results, a new fully connected imaging network (FCIN) is proposed for near-field SAIR. In FCIN, the fully connected network is first used to reconstruct the image domain directly from the visibility function, and then the residual dense network is used for image denoising and enhancement. The simulation results show that the proposed FCIN method has high imaging accuracy and shorten imaging time.

  • Multi-Level Encrypted Transmission Scheme Using Hybrid Chaos and Linear Modulation Open Access

    Tomoki KAGA  Mamoru OKUMURA  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/10/25
      Vol:
    E105-B No:5
      Page(s):
    638-647

    In the fifth-generation mobile communications system (5G), it is critical to ensure wireless security as well as large-capacity and high-speed communication. To achieve this, a chaos modulation method as an encrypted and channel-coded modulation method in the physical layer is proposed. However, in the conventional chaos modulation method, the decoding complexity increases exponentially with respect to the modulation order. To solve this problem, in this study, a hybrid modulation method that applies quadrature amplitude modulation (QAM) and chaos to reduce the amount of decoding complexity, in which some transmission bits are allocated to QAM while maintaining the encryption for all bits is proposed. In the proposed method, a low-complexity decoding method is constructed by ordering chaos and QAM symbols based on the theory of index modulation. Numerical results show that the proposed method maintains good error-rate performance with reduced decoding complexity and ensures wireless security.

  • X-Band GaN Chipsets for Cost-Effective 20W T/R Modules Open Access

    Jun KAMIOKA  Yoshifumi KAWAMURA  Ryota KOMARU  Masatake HANGAI  Yoshitaka KAMO  Tetsuo KODERA  Shintaro SHINJO  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/12/10
      Vol:
    E105-C No:5
      Page(s):
    194-202

    This paper reports on X-band Gallium Nitride (GaN) chipsets for cost-effective 20W transmit-receive (T/R) modules. The chipset components include a GaN-on-Si monolithic microwave integrated circuit (MMIC) driver amplifier (DA), a GaN-on-SiC high power amplifier (HPA) with GaAs matching circuits, a high-gain GaN-on-Si HPA with a GaAs output matching circuit, and a GaN-on-Si MMIC switch (SW). By utilizing either combination of the DA or single high-gain HPA, the configurations of two T/R module types can be realized. The GaN-on-Si MMIC DA demonstrates an output power of 6.4-7.4W, an associate gain of 22.3-24.6dB and a power added efficiency (PAE) of 32-36% over 9.0-11.0GHz. A GaN-on-SiC HPA with GaAs matching circuits exhibited an output power of 20-28W, associate gain of 7.8-10.7dB, and a PAE of 40-56% over 9.0-11.0GHz. The high-gain GaN-on-Si HPA with a GaAs output matching circuit exhibits an output power of 15-30W, associate gain of 27-30dB, and PAE of 26-33% over 9.0-11.0GHz. The GaN-on-Si MMIC switch demonstrates insertion losses of 1.1-1.3dB and isolation of 10.1-14.7dB over 8.0-11.5GHz. By employing cost-effective circuit configurations, the costs of these chipsets are estimated to be about half that of conventional chipsets.

  • Simple Proof of the Lower Bound on the Average Distance from the Fermat-Weber Center of a Convex Body Open Access

    Xuehou TAN  

     
    PAPER-Numerical Analysis and Optimization

      Pubricized:
    2021/11/15
      Vol:
    E105-A No:5
      Page(s):
    853-857

    We show that for any convex body Q in the plane, the average distance from the Fermat-Weber center of Q to the points in Q is at least Δ(Q)/6, where Δ(Q) denotes the diameter of Q. Our proof is simple and straightforward, since it needs only elementary calculations. This simplifies a previously known proof that is based on Steiner symmetrizations.

  • Low-Complexity VBI-Based Channel Estimation for Massive MIMO Systems

    Chen JI  Shun WANG  Haijun FU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    600-607

    This paper proposes a low-complexity variational Bayesian inference (VBI)-based method for massive multiple-input multiple-output (MIMO) downlink channel estimation. The temporal correlation at the mobile user side is jointly exploited to enhance the channel estimation performance. The key to the success of the proposed method is the column-independent factorization imposed in the VBI framework. Since we separate the Bayesian inference for each column vector of signal-of-interest, the computational complexity of the proposed method is significantly reduced. Moreover, the temporal correlation is automatically uncoupled to facilitate the updating rule derivation for the temporal correlation itself. Simulation results illustrate the substantial performance improvement achieved by the proposed method.

  • LMI-Based Design of Output Feedback Controllers with Decentralized Event-Triggering

    Koichi KITAMURA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2021/09/15
      Vol:
    E105-A No:5
      Page(s):
    816-822

    In this paper, event-triggered control over a sensor network is studied as one of the control methods of cyber-physical systems. Event-triggered control is a method that communications occur only when the measured value is widely changed. In the proposed method, by solving an LMI (Linear Matrix Inequality) feasibility problem, an event-triggered output feedback controller such that the closed-loop system is asymptotically stable is derived. First, the problem formulation is given. Next, the control problem is reduced to an LMI feasibility problem. Finally, the proposed method is demonstrated by a numerical example.

  • Specification and Verification of Multitask Real-Time Systems Using the OTS/CafeOBJ Method

    Masaki NAKAMURA  Shuki HIGASHI  Kazutoshi SAKAKIBARA  Kazuhiro OGATA  

     
    PAPER

      Pubricized:
    2021/09/24
      Vol:
    E105-A No:5
      Page(s):
    823-832

    Because processes run concurrently in multitask systems, the size of the state space grows exponentially. Therefore, it is not straightforward to formally verify that such systems enjoy desired properties. Real-time constrains make the formal verification more challenging. In this paper, we propose the following to address the challenge: (1) a way to model multitask real-time systems as observational transition systems (OTSs), a kind of state transition systems, (2) a way to describe their specifications in CafeOBJ, an algebraic specification language, and (3) a way to verify that such systems enjoy desired properties based on such formal specifications by writing proof scores, proof plans, in CafeOBJ. As a case study, we model Fischer's protocol, a well-known real-time mutual exclusion protocol, as an OTS, describe its specification in CafeOBJ, and verify that the protocol enjoys the mutual exclusion property when an arbitrary number of processes participates in the protocol*.

  • Feature Selection and Parameter Optimization of Support Vector Machines Based on a Local Search Based Firefly Algorithm for Classification of Formulas in Traditional Chinese Medicine Open Access

    Wen SHI  Jianling LIU  Jingyu ZHANG  Yuran MEN  Hongwei CHEN  Deke WANG  Yang CAO  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2021/11/16
      Vol:
    E105-A No:5
      Page(s):
    882-886

    Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.

  • Characterization and Construction of Generalized Bent Functions with Flexible Coefficients

    Zhiyao YANG  Pinhui KE  Zhixiong CHEN  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/10/29
      Vol:
    E105-A No:5
      Page(s):
    887-891

    In 2017, Tang et al. provided a complete characterization of generalized bent functions from ℤ2n to ℤq(q = 2m) in terms of their component functions (IEEE Trans. Inf. Theory. vol.63, no.7, pp.4668-4674). In this letter, for a general even q, we aim to provide some characterizations and more constructions of generalized bent functions with flexible coefficients. Firstly, we present some sufficient conditions for a generalized Boolean function with at most three terms to be gbent. Based on these results, we give a positive answer to a remaining question proposed by Hodžić in 2015. We also prove that the sufficient conditions are also necessary in some special cases. However, these sufficient conditions whether they are also necessary, in general, is left as an open problem. Secondly, from a uniform point of view, we provide a secondary construction of gbent function, which includes several known constructions as special cases.

  • Reliable Decentralized Supervisory Control of Discrete Event Systems with Single-Level Inference

    Shigemasa TAKAI  Sho YOSHIDA  

     
    PAPER

      Pubricized:
    2021/10/08
      Vol:
    E105-A No:5
      Page(s):
    799-807

    We consider a reliable decentralized supervisory control problem for discrete event systems in the inference-based framework. This problem requires us to synthesize local supervisors such that the controlled system achieves the specification and is nonblocking, even if local control decisions of some local supervisors are not available for making the global control decision. In the case of single-level inference, we introduce a notion of reliable 1-inference-observability and show that reliable 1-inference-observability together with controllability and Lm(G)-closedness is a necessary and sufficient condition for the existence of a solution to the reliable decentralized supervisory control problem.

  • Optimal Control of Timed Petri Nets Under Temporal Logic Constraints with Generalized Mutual Exclusion

    Kohei FUJITA  Toshimitsu USHIO  

     
    PAPER

      Pubricized:
    2021/10/13
      Vol:
    E105-A No:5
      Page(s):
    808-815

    This paper presents a novel method for optimal control of timed Petri nets, introducing a novel temporal logic based constraint called a generalized mutual exclusion temporal constraint (GMETC). The GMETC is described by a metric temporal logic (MTL) formula where each atomic proposition represents a generalized mutual exclusion constraint (GMEC). We formulate an optimal control problem of the timed Petri nets under a given GMETC and solve the problem by transforming it into an integer linear programming problem where the MTL formula is encoded by linear inequalities. We show the effectiveness of the proposed approach by a numerical simulation.

  • Improved Metric Function for AlphaSeq Algorithm to Design Ideal Complementary Codes for Multi-Carrier CDMA Systems

    Shucong TIAN  Meng YANG  Jianpeng WANG  Rui WANG  Avik R. ADHIKARY  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2021/11/15
      Vol:
    E105-A No:5
      Page(s):
    901-905

    AlphaSeq is a new paradigm to design sequencess with desired properties based on deep reinforcement learning (DRL). In this work, we propose a new metric function and a new reward function, to design an improved version of AlphaSeq. We show analytically and also through numerical simulations that the proposed algorithm can discover sequence sets with preferable properties faster than that of the previous algorithm.

  • BOTDA-Based Technique for Measuring Maximum Loss and Crosstalk at Splice Point in Few-Mode Fibers Open Access

    Tomokazu ODA  Atsushi NAKAMURA  Daisuke IIDA  Hiroyuki OSHIDA  

     
    PAPER-Optical Fiber for Communications

      Pubricized:
    2021/11/05
      Vol:
    E105-B No:5
      Page(s):
    504-511

    We propose a technique based on Brillouin optical time domain analysis for measuring loss and crosstalk in few-mode fibers (FMFs). The proposed technique extracts the loss and crosstalk of a specific mode in FMFs from the Brillouin gains and Brillouin gain coefficients measured under two different conditions in terms of the frequency difference between the pump and probe lights. The technique yields the maximum loss and crosstalk at a splice point by changing the electrical field injected into an FMF as the pump light. Experiments demonstrate that the proposed technique can measure the maximum loss and crosstalk of the LP11 mode at a splice point in a two-mode fiber.

  • A Routing Strategy with Optimizing Linear Programming in Hybrid SDN

    Chenhui WANG  Hong NI  Lei LIU  

     
    PAPER-Network

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    569-579

    Software-defined networking (SDN) decouples the control and forwarding of network devices, providing benefits such as simplified control. However, due to cost constraints and other factors, SDN is difficult to fully deploy. It has been proposed that SDN devices can be incrementally deployed in a traditional IP network, i.e., hybrid SDN, to provide partial SDN benefits. Studies have shown that better traffic engineering performance can be achieved by modifying the coverage and placement of SDN devices in hybrid SDN, because they can influence the behavior of legacy switches through certain strategies. However, it is difficult to develop and execute a traffic engineering strategy in hybrid SDN. This article proposes a routing algorithm to achieve approximate load balancing, which minimizes the maximum link utilization by using the optimal solution of linear programming and merging the minimum split traffic flows. A multipath forwarding mechanism under the same problem is designed to optimize transmission time. Experiments show that our algorithm has certain advantages in link utilization and transmission time compared to traditional distributed routing algorithms like OSPF and some hybrid SDN routing mechanisms. Furthermore, our algorithm can approximate the control effect of full SDN when the deployment rate of SDN devices is 40%.

  • SDM4IIoT: An SDN-Based Multicast Algorithm for Industrial Internet of Things

    Hequn LI  Jiaxi LU  Jinfa WANG  Hai ZHAO  Jiuqiang XU  Xingchi CHEN  

     
    PAPER-Network

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    545-556

    Real-time and scalable multicast services are of paramount importance to Industrial Internet of Things (IIoT) applications. To realize these services, the multicast algorithm should, on the one hand, ensure the maximum delay of a multicast session not exceeding its upper delay bound. On the other hand, the algorithm should minimize session costs. As an emerging networking paradigm, Software-defined Networking (SDN) can provide a global view of the network to multicast algorithms, thereby bringing new opportunities for realizing the desired multicast services in IIoT environments. Unfortunately, existing SDN-based multicast (SDM) algorithms cannot meet the real-time and scalable requirements simultaneously. Therefore, in this paper, we focus on SDM algorithm design for IIoT environments. To be specific, the paper first converts the multicast tree construction problem for SDM in IIoT environments into a delay-bounded least-cost shared tree problem and proves that it is an NP-complete problem. Then, the paper puts forward a shared tree (ST) algorithm called SDM4IIoT to compute suboptimal solutions to the problem. The algorithm consists of five steps: 1) construct a delay-optimal shared tree; 2) divide the tree into a set of subpaths and a subtree; 3) optimize the cost of each subpath by relaxing the delay constraint; 4) optimize the subtree cost in the same manner; 5) recombine them into a shared tree. Simulation results show that the algorithm can provide real-time support that other ST algorithms cannot. In addition, it can achieve good scalability. Its cost is only 20.56% higher than the cost-optimal ST algorithm. Furthermore, its computation time is also acceptable. The algorithm can help to realize real-time and scalable multicast services for IIoT applications.

  • Performance Evaluation of Classification and Verification with Quadrant IQ Transition Image

    Hiro TAMURA  Kiyoshi YANAGISAWA  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER-Network Management/Operation

      Pubricized:
    2021/12/01
      Vol:
    E105-B No:5
      Page(s):
    580-587

    This paper presents a physical layer wireless device identification method that uses a convolutional neural network (CNN) operating on a quadrant IQ transition image. This work introduces classification and detection tasks in one process. The proposed method can identify IoT wireless devices by exploiting their RF fingerprints, a technology to identify wireless devices by using unique variations in analog signals. We propose a quadrant IQ image technique to reduce the size of CNN while maintaining accuracy. The CNN utilizes the IQ transition image, which image processing cut out into four-part. An over-the-air experiment is performed on six Zigbee wireless devices to confirm the proposed identification method's validity. The measurement results demonstrate that the proposed method can achieve 99% accuracy with the light-weight CNN model with 36,500 weight parameters in serial use and 146,000 in parallel use. Furthermore, the proposed threshold algorithm can verify the authenticity using one classifier and achieved 80% accuracy for further secured wireless communication. This work also introduces the identification of expanded signals with SNR between 10 to 30dB. As a result, at SNR values above 20dB, the proposals achieve classification and detection accuracies of 87% and 80%, respectively.

  • Multicell Distributed Beamforming Based on the Altruistic and Egoistic Strategy with Local Channel State Information

    Zijia HUANG  Qinghai YANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/11/11
      Vol:
    E105-B No:5
      Page(s):
    617-628

    In this paper, the sum cell rate based on altruistic and egoistic multicell distributed beamforming (MDBF) is studied with local channel state Information (CSI). To start with, we provide two sufficient conditions for implementing altruistic and egoistic strategy based on the traditional method, and give the proof of those condition. Second, a MDBF method based on the altruistic and egoistic strategy is proposed, where the altruistic strategy is implemented with the internal penalty function. Finally, simulation results demonstrate that the effectiveness of the sufficient conditions and the proposed method has the different performance and advantages.

  • Dynamic Fault Tolerance for Multi-Node Query Processing

    Yutaro BESSHO  Yuto HAYAMIZU  Kazuo GODA  Masaru KITSUREGAWA  

     
    PAPER

      Pubricized:
    2022/02/03
      Vol:
    E105-D No:5
      Page(s):
    909-919

    Parallel processing is a typical approach to answer analytical queries on large database. As the size of the database increases, we often try to increase the parallelism by incorporating more processing nodes. However, this approach increases the possibility of node failure as well. According to the conventional practice, if a failure occurs during query processing, the database system restarts the query processing from the beginning. Such temporal cost may be unacceptable to the user. This paper proposes a fault-tolerant query processing mechanism, named PhoeniQ, for analytical parallel database systems. PhoeniQ continuously takes a checkpoint for every operator pipeline and replicates the output of each stateful operator among different processing nodes. If a single processing node fails during query processing, another can promptly take over the processing. Hence, PhoneniQ allows the database system to efficiently resume query processing after a partial failure event. This paper presents a key design of PhoeniQ and prototype-based experiments to demonstrate that PhoeniQ imposes negligible performance overhead and efficiently continues query processing in the face of node failure.

  • Research on Mongolian-Chinese Translation Model Based on Transformer with Soft Context Data Augmentation Technique

    Qing-dao-er-ji REN  Yuan LI  Shi BAO  Yong-chao LIU  Xiu-hong CHEN  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2021/11/19
      Vol:
    E105-A No:5
      Page(s):
    871-876

    As the mainstream approach in the field of machine translation, neural machine translation (NMT) has achieved great improvements on many rich-source languages, but performance of NMT for low-resource languages ae not very good yet. This paper uses data enhancement technology to construct Mongolian-Chinese pseudo parallel corpus, so as to improve the translation ability of Mongolian-Chinese translation model. Experiments show that the above methods can improve the translation ability of the translation model. Finally, a translation model trained with large-scale pseudo parallel corpus and integrated with soft context data enhancement technology is obtained, and its BLEU value is 39.3.

881-900hit(20498hit)