The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

15501-15520hit(20498hit)

  • Extension of DNS to the Internationalized Domain Names

    Hongbo SHI  Izuru SATO  Shigeki GOTO  

     
    PAPER

      Vol:
    E84-D No:5
      Page(s):
    588-595

    This paper proposes a new method of realizing internationlized domain names (iDN) and has been discussed at IETF (Internet Engineering Task Force). iDN allows a user to specify multi-lingual domain names, such as Japanese, Chinese, and Korean. iDN is a proper extension of the current domain name system. We have already developed an iDN implementation, named Global Domain Name System (GDNS). GDNS extends the usage of alias records, and gives reverse mapping information for multi-lingual domain names. This paper presents yet another method which introduces new Resource Record (RR) types to cover multi-lingual domain names. We have two new RR (Resource Record) types. The first new record is INAME and the other is IPTR. These two RR types can cover multi-lingual domain names. This paper also discusses the efficiency of DNS. Since DNS is a distributed database system, the performance depends on the method of retrieving data. This paper suggests a new retrieving method that can improve the performance of DNS remarkably.

  • Performance Evaluation for Multiple DSSS Systems with Channel Bands Overlapped

    Ming-Huei CHEN  Bih-Hwang LEE  Chwan-Chia WU  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E84-A No:5
      Page(s):
    1315-1325

    This paper conducts performance evaluation and performs simulation for a code division multiple access (CDMA) system when channel bands of multiple neighboring CDMA/DSSS are overlapped in time domain. It is assumed that all systems adopt direct-sequence spread-spectrum (DSSS) technique and are BPSK modulated by the different carrier frequencies. Automatic power control (APC) is also applied in the interfered system such that the receiver gets the same power from all users. Without loss generality, an additive white Gaussian noise (AWGN) channel is also assumed during analysis. In this paper, the analytic solution of the signal to noise ratio (SNR) is first derived in which both CDMA systems are modulated by different carrier frequencies. We have the results by simulation with Δ f = 0 and Δ f = 1 MHz, respectively. This analysis is good for general cases; and the results show an excellent computational performance. In particular, the result is very close to Pursley's result, when the systems have the same code length with no carrier difference.

  • A Remark on the MOV Algorithm for Non-supersingular Elliptic Curves

    Taiichi SAITO  Shigenori UCHIYAMA  

     
    LETTER

      Vol:
    E84-A No:5
      Page(s):
    1266-1268

    In recent years, the study of the security of Elliptic Curve Cryptosystems (ECCs) have been received much attention. The MOV algorithm, which reduces the elliptic curve discrete log problem (ECDLP) to the discrete log problem in finite fields with the Weil pairing, is a representative attack on ECCs. Recently Kanayama et al. observed a realization of the MOV algorithm for non-supersingular elliptic curves under the weakest condition. Shikata et al. independently considered a realization of the MOV algorithm for non-supersingular elliptic curves and proposed a generalization of the MOV algorithm. This short note explicitly shows that, under a usual cryptographical condition, we can apply the MOV algorithm to non-supersingular elliptic curves by using the multiplication by constant maps as in the case of supersingular. Namely, it is explicitly showed that we don't need such a generalization in order to realize the MOV algorithm for non-supersingular elliptic curves under a usual cryptographical condition.

  • Computing Short Lucas Chains for Elliptic Curve Cryptosystems

    Yukio TSURUOKA  

     
    PAPER

      Vol:
    E84-A No:5
      Page(s):
    1227-1233

    Elliptic curves Em: By2 = x3+Ax2+x are suitable for cryptographic use because fast addition operations can be defined over Em. In elliptic curve cryptosystems, encryption/decryption involves multiplying a point P on Em by a large integer n. In this paper, we propose a fast algorithm for computing such scalar multiplication over Em. The new algorithm requires fewer operations than previously proposed algorithms. As a result, elliptic curve cryptosystems based on Em can be speeded up by using the new algorithm.

  • Composing Collaborative Component Systems Using Colored Petri Nets

    Yoshiyuki SHINKAWA  Masao J. MATSUMOTO  

     
    PAPER

      Vol:
    E84-A No:5
      Page(s):
    1209-1217

    Adaptation of software components to the requirements is one of the key concerns in Component Based Software Development (CBSD). In this paper, we propose a formal approach to compose component based systems which are adaptable to the requirements. We focus on the functional aspects of software components and requirements, which are expressed in S-sorted functions. Those S-sorted functions are transformed into Colored Petri Nets (CPN) models in order to evaluate connectivity between the components, and to evaluate adaptability of composed systems to the requirements. The connectivity is measured based on colors or data types in CPN, while the adaptability is measured based on functional equivalency. We introduce simple glue codes to connect the components each other. The paper focuses on business applications, however the proposed approach can be applied to any other domains as far as the functional adaptability is concerned.

  • A 32-bit RISC Microprocessor with DSP Functionality: Rapid Prototyping

    Byung In MOON  Dong Ryul RYU  Jong Wook HONG  Tae Young LEE  Sangook MOON  Yong Surk LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E84-A No:5
      Page(s):
    1339-1347

    We have designed a 32-bit RISC microprocessor with 16-/32-bit fixed-point DSP functionality. This processor, called YD-RISC, combines both general-purpose microprocessor and digital signal processor (DSP) functionality using the reduced instruction set computer (RISC) design principles. It has functional units for arithmetic operation, digital signal processing (DSP) and memory access. They operate in parallel in order to remove stall cycles after DSP or load/store instructions, which usually need one or more issue latency cycles in addition to the first issue cycle. High performance was achieved with these parallel functional units while adopting a sophisticated five-stage pipeline structure. The pipelined DSP unit can execute one 32-bit multiply-accumulate (MAC) or 16-bit complex multiply instruction every one or two cycles through two 17-b 17-b multipliers and an operand examination logic circuit. Power-saving techniques such as power-down mode and disabling execution blocks allow low power consumption. In the design of this processor, we use logic synthesis and automatic place-and-route. This top-down approach shortens design time, while a high clock frequency is achieved by refining the processor architecture.

  • Superior Noise Performance and Wide Dynamic Range Erbium Doped Fiber Amplifiers Employing Variable Attenuation Slope Compensator

    Haruo NAKAJI  Motoki KAKUI  Hitoshi HATAYAMA  Chisai HIROSE  Hiroyuki KURATA  Masayuki NISHIMURA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    598-604

    In order to realize automatic-level-controlled (ALC) erbium doped fiber amplifiers (EDFAs) with both wide dynamic range and good noise performance, we propose EDFAs employing the automatic power control (APC) scheme and a variable attenuation slope compensator (VASC). The VASC consists of two asymmetrical Mach-Zehnder interferometers (MZIs) concatenated in series and thermo optic (TO) heaters are attached to the arms of each MZIs. By adjusting the electric power supplied to the TO heaters, an almost linear attenuation slope can be varied by plus minus 5 dB or more over the operational wavelength band of 30 nm. The EDFA employing the APC scheme and the VASC has exhibited a dynamic range as large as 20 dB with the output power variation as small as 0.7 dB, which is as good as that of the EDFA employing the APC scheme and a variable optical attenuator (VOA). The noise figure (NF) of the EDFA employing the VASC was degraded about 4.1 dB with increasing the input power by 20 dB, while it was degraded about 7.3 dB with increasing the input power by only 15 dB in the EDFA employing the VOA. The EDFA employing the VASC can realize the ALC operation over a wider dynamic range with reduced noise figure degradation. In the EDFA employing the VASC, the power excursion was suppressed to less than 1.1 dB, when the input signal level was changed between -23 dBm/ch and -18 dBm/ch with the rise/fall time of 8 ms.

  • Solving the Single-Vehicle Scheduling Problems for All Home Locations under Depth-First Routing on a Tree

    Hiroshi NAGAMOCHI  Koji MOCHIZUKI  Toshihide IBARAKI  

     
    PAPER

      Vol:
    E84-A No:5
      Page(s):
    1135-1143

    We consider a single-vehicle scheduling problem on a tree, where each vertex has a job with a release time and a processing time and each edge has a travel time. There is a single vehicle which starts from a start vertex s and reaches a goal vertex g after finishing all jobs. In particular, s is called a home location if s = g. The objective of the problem is to find a depth-first routing on T so as to minimize the completion time. In this paper, we first show that the minimum completion times of the problem for all home locations s V can be simultaneously computed in O(n) time, once the problem with a specified home location s V has been solved, where n is the number of vertices. We also show that given a specified start vertex s, the minimum completion times for all goal vertices g can be computed in O(n) time.

  • Correction to the Diameter of Trivalent Cayley Graphs

    Satoshi OKAWA  

     
    LETTER

      Vol:
    E84-A No:5
      Page(s):
    1269-1272

    The trivalent Cayley graph TCn was introduced and investigated in [1],[2]. Though "the diameter" was presented in [2], unfortunately it was not the diameter but an upper bound of it. In this paper, a lower bound of the diameter dia(TCn) of the trivalent Cayley graph TCn is investigated and the formula dia(TCn) = 2n - 2 for n 3 is established.

  • Frequency Analysis of Wavelength Demultiplexers and Optical Filters with Finite 2-D Photonic Crystals

    Katsumi TAKANO  Kiyoshi NAKAGAWA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1295-1303

    A wavelength demultiplexer made of 2-D photonic crystal capable of simultaneously separating many channels from WDM light is analyzed in order to study the properties and clarify the design parameters. Numerical analyses are carried out for the optical filter structure and the demultiplexer structure which consists of several filters and waveguides carved in the crystal. The results of this paper show the considerations regarding the frequency tuning, the device size, the bandwidth and integration of filters. Further more, for a photonic crystal filter, a method for realizing a flat-top pass-band generally required from the dense-WDM systems is presented and its property is shown. The calculation method is the scattering matrix method which is proper to the analysis of the frequency domain in a 2-D photonic crystal with finite size and with some defects.

  • A Note on "New Estimation Method for the Membership Values in Fuzzy Sets"

    Elsaid Mohamed ABDELRAHIM  Takashi YAHAGI  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E84-D No:5
      Page(s):
    675-678

    Chen et al., have proposed a new estimation method for the membership values in fuzzy sets. The proposed scheme takes input from empirical/experimental data, which reflect the expert's knowledge on the relative degree of belonging of the members, and then searches for the best fit membership values of the element. Through the estimation of the practical case (Sect. 3 in [1]) the algorithm suggests to normalize the estimated membership values if there is any among them more than one and change some condition to guarantee its positiveness. In this paper, we show how to use the same imposed condition to guarantee that the estimated membership values will be within the unit interval without normalization.

  • Designing Efficient Parallel Algorithms with Multi-Level Divide-and-Conquer

    Wei CHEN  Koichi WADA  

     
    PAPER

      Vol:
    E84-A No:5
      Page(s):
    1201-1208

    Multi-level divide-and-conquer (MDC) is a generalized divide-and-conquer technique, which consists of more than one division step organized hierarchically. In this paper, we investigate the paradigm of the MDC and show that it is an efficient technique for designing parallel algorithms. The following parallel algorithms are used for studying the MDC: finding the convex hull of discs, finding the upper envelope of line segments, finding the farthest neighbors of a convex polygon and finding all the row maxima of a totally monotone matrix. The third and the fourth algorithms are newly presented. Our discussion is based on the EREW PRAM, but the methods discussed here can be applied to any parallel computation models.

  • High Bit Rate Transmission over 1 Tbit/s

    Satoki KAWANISHI  

     
    INVITED PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1135-1141

    Recent progress in ultrahigh bit rate optical transmission using time-division multiplexing and wavelength-division multiplexing is described. Latest over 1 Tbit/s transmission experiments are shown and the possibility of higher bit rate transmission is discussed.

  • Temperature Insensitive Micromachined GaAlAs/GaAs Vertical Cavity Wavelength Filter

    Takeru AMANO  Fumio KOYAMA  Nobuhiko NISHIYAMA  Akihiro MATSUTANI  Kenichi IGA  

     
    PAPER-Optical Passive Devices and Modules

      Vol:
    E84-B No:5
      Page(s):
    1304-1310

    A novel temperature insensitive wavelength filter consisting of GaAlAs/GaAs distributed Bragg reflectors (DBRs) has been demonstrated. This micromachined DBR is mechanically tuned by differential thermal expansion. The strain-induced displacement of one mirror can generate wavelength tuning and trimming functions with an adjustable temperature dependence. We succeeded in the control of temperature dependence in this micromachined semiconductor filter by properly designing a vertical cavity structure. The achieved temperature dependence was as small as +0.01 nm/K, which is one-tenth of that of conventional semiconductor based optical filters. Also, a wavelength trimming of over 20 nm was demonstrated after completing the device fabrication. In addition, we demonstrated a 4 4 multiple wavelength micromachined vertical cavity filter array. The multi-wavelength filter array with a wavelength span of 45 nm was fabricated by partially etching off a GaAs wavelength control layer loaded on the top surface of device.

  • Active Gain-Slope Compensation of EDFA Using Thulium-Doped Fiber as Saturable Absorber

    Tomoharu KITABAYASHI  Takuya AIZAWA  Tetsuya SAKAI  Akira WADA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-B No:5
      Page(s):
    1231-1235

    In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.

  • Optical Label Switching Using Optical Label Based on Wavelength and Pilot Tone Frequency

    Kiyoshi TANAKA  Katsuhiro SHIMANO  Kyo INOUE  Shigeru KUWANO  Takeshi KITAGAWA  Kimio OGUCHI  

     
    PAPER-Communication Networks

      Vol:
    E84-B No:5
      Page(s):
    1127-1134

    This paper describes a new optical label switching technique; wavelength and pilot tone frequency are combined to form labels that are used to control transport network routing. This technique is very attractive for achieving simple nodes that offer extremely rapid forwarding. Experimental results on the discrimination of optical labels and all-optical label conversion are also presented.

  • Ultra-High Capacity 40-Gb/s WDM Systems

    Torben N. NIELSEN  

     
    INVITED PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    516-518

    The demonstrated capacity of 40-Gb/s WDM systems is now exceeding 3-Tb/s. We will discuss some of the enabling technologies for these high capacities and some of the technologies that may push the aggregate capacity of WDM systems towards 10-Tb/s.

  • Active Gain-Slope Compensation of EDFA Using Thulium-Doped Fiber as Saturable Absorber

    Tomoharu KITABAYASHI  Takuya AIZAWA  Tetsuya SAKAI  Akira WADA  

     
    PAPER-Optical Fibers and Cables

      Vol:
    E84-C No:5
      Page(s):
    605-609

    In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.

  • Bandwidth Allocation Considering Priorities among Multimedia Components in Mobile Networks

    Shigeki SHIOKAWA  Shuji TASAKA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E84-B No:5
      Page(s):
    1344-1355

    This paper proposes a bandwidth allocation scheme which improves degradation of communication quality due to handoffs in mobile multimedia networks. In general, a multimedia call consists of several component calls. For example, a video phone call consists of a voice call and a video call. In realistic environments, each component call included in one multimedia call may have different requirements for quality-of-service (QoS) from each other, and priorities among these component calls often exist with respect to importance for communications. When the available bandwidth is not enough for a handoff call, the proposed scheme eliminates a low priority component call and defers bandwidth allocation for a component call whose delay related QoS is not strict. Moreover, in the allocation, the scheme gives priority to new calls and handoff calls over a deferred call and also performs bandwidth reallocation to eliminated component calls. By computer simulation, we evaluate the performance such as call dropping probability and show effectiveness of the proposed scheme.

  • High-Performance VCSELs for Optical Data Links

    Rainer MICHALZIK  Karl Joachim EBELING  Max KICHERER  Felix MEDERER  Roger KING  Heiko UNOLD  Roland JAGER  

     
    INVITED PAPER-Optical Active Devices and Modules

      Vol:
    E84-C No:5
      Page(s):
    629-638

    The present paper discusses several promising application areas for optical data links based on high-performance vertical-cavity surface-emitting laser diodes (VCSELs). Both 850 and 980 nm emission wavelength devices realized in the GaAs-AlGaAs or InGaAs-AlGaAs material systems are considered. We show data transmission results of 10 Gb/s signals at 830 nm wavelength over a new high-bandwidth multimode silica fiber of up to 1.6 km length. The same fiber type is employed to demonstrate the first 40 Gb/s transport over 300 m distance by means of a 4-channel coarse wavelength-division multiplexing approach. A first 1 10 linear VCSEL array capable of 10 Gb/s per channel operation is presented for use in next generation parallel optical modules. To improve the singlemode emission characteristics for output power in the 5 mW range we introduce a new device concept incorporating a long monolithic cavity. For low-cost short-distance data links we investigate graded-index polymer optical fibers and report on up to 9 Gb/s transmission over a length of 100 m. Polymer waveguides are also used in an optical layer of a hybrid electrical-optical printed circuit board. Transmitted 10 Gb/s optical data over a prototype board show the potential of this new technology. Finally we present two-dimensional VCSEL arrays for highly parallel data transport on a CMOS chip level. Both 980 and 850 nm bottom emitting devices with modulation capabilities up to 12.5 Gb/s are discussed.

15501-15520hit(20498hit)