The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

15581-15600hit(20498hit)

  • Overlapped Wideband/Narrowband and Wideband/Wideband Signal Transmission

    Shinsuke HARA  Akira NISHIKAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E84-A No:3
      Page(s):
    866-874

    In this paper, we discuss power spectrum overlapping of wideband/narrowband signals and wideband/wideband signals for increasing transmission efficiency. Here, in order to eliminate cross signal interference among those signals, we propose a generalized zero-forcing type decorrelating detection. Our numerical results show that, with the decorrelating detector, the overlapped wideband/wideband signal transmission can much improve the transmission efficiency. This implies that, for a given frequency bandwidth, in order to increase the information transmission rate, we should employ two different kinds of direct sequence spread spectrum-based signals with each power spectrum appropriately overlapped, not taking a single carrier-based approach nor an orthogonal multi-carrier approach.

  • Equalisation of Time Variant Multipath Channels Using Amplitude Banded LMS Algorithms

    Tetsuya SHIMAMURA  Colin F. N. COWAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E84-A No:3
      Page(s):
    802-812

    For the purpose of equalisation of rapidly time variant multipath channels, we derive a novel adaptive algorithm, the amplitude banded LMS (ABLMS), which implements a non-linear adaptation based on a coefficient matrix. Then we develop the ABLMS algorithm as the adaptation procedure for a linear transversal equaliser (LTE) and a decision feedback equaliser (DFE) where a parallel adaptation scheme is deployed. Computer simulations demonstrate that with a small increase of computational complexity, the ABLMS based parallel equalisers provide a significant improvement related to the conventional LMS DFE and the LMS LTE in the case of a second order Markov communication channel model.

  • Spectroscopic MR Imaging Using the Spread Spectrum Produced by Oscillating Gradient Fields

    Kunio TAKAYA  

     
    PAPER-Image

      Vol:
    E84-A No:3
      Page(s):
    875-883

    A chemical shift MR method which utilizes a oscillating gradient field is presented in this paper. Frequency modulation resulting from oscillating a gradient field spreads the spectrum that contains both chemical shift and spatial information, over a wide frequency range by using a large modulation factor in FM. The chemical shift spectrum resides within every frequency band segmented by the modulation frequency ωm. The spectral elements gathered from all such frequency segments for a chemical shift frequency contain the spatial image of that particular chemical shift frequency, despite the distortion introduced by a series of the Bessel functions acting as a point spread function. A sum of several Bessel functions of the first kind Jn(. ) is used to approximate the deconvolution process, since the sum staggered with respect to n has a desirable peaking property useful in deconvolution. This leads to devise a new image reconstruction algorithm based on the simple moving average over the spatial coordinate for which the oscillating gradient is applied. Furthermore, the number of echo measurements necessary for an image size of N N is reduced from N2 of the spin echo chemical shift imaging down to N by this method. Simulation results supporting the validity of this method are also presented in this paper.

  • A Fine Grain Cooled Logic Architecture for Low-Power Processors

    Hiroyuki MATSUBARA  Takahiro WATANABE  Tadao NAKAMURA  

     
    PAPER

      Vol:
    E84-A No:3
      Page(s):
    735-740

    In this paper, we propose a fine grain Cooled Logic architecture for low-power oriented processors. Cooled Logic detects, in novel hardware method with dual-rail logic, functional blocks to be active, and stops clocks to each of the functional blocks in order to make it inactive at certain periods. To confirm the effectiveness of our approach, we design a 4-bit and a 16-bit event-driven array multipliers, and analyze their power consumption by the HSPICE simulator. As a result, it is shown that Cooled Logic has a tendency to reduce power consumptions in both the functional blocks and the clock drivers of the multipliers.

  • A Novel Dynamically Programmable Arithmetic Array (DPAA) Processor for Digital Signal Processing

    Boon-Keat TAN  Ryuji YOSHIMURA  Toshimasa MATSUOKA  Kenji TANIGUCHI  

     
    PAPER

      Vol:
    E84-A No:3
      Page(s):
    741-747

    A new architecture-based Dynamically Programmable Arithmetic Array processor (DPAA) is proposed for general purpose Digital Signal Processing applications. Parallelism and pipelining are achieved by using DPAA, which consists of various basic arithmetic blocks connected through a code-division multiple access bus interface. The proposed architecture poses 100% interconnection flexibility because connections are done virtually through code matching instead of physical wire connections. Compared to conventional multiplexing architectures, the proposed interconnection topology consumes less chip area and thus, more arithmetic blocks can be incorporated. A 16-bit prototype chip incorporating 10 multipliers and 40 other arithmetic blocks had been implemented into a 4.5 mm 4.5 mm chip with 0.6 µm CMOS process. DPAA also features its simple programmability, as numerical formula can be used to configure the processor without programming languages or specialized CAD tools.

  • PRIME ARQ: A Novel ARQ Scheme for High-Speed Wireless ATM

    Atsushi OHTA  Masafumi YOSHIOKA  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E84-B No:3
      Page(s):
    474-483

    Automatic repeat request (ARQ) for wireless ATM (WATM) operating at 20 Mbit/s or higher is required to achieve high throughput performance as well as high transmission quality, i.e., low CLR (cell loss ratio). Selective Repeat (SR) and Go-Back-N (GBN) are typical ARQ schemes. Though SR-ARQ is superior to GBN-ARQ in throughput performance, the implementation complexity of SR-ARQ's control procedures is disadvantageous to its application to high-speed wireless systems. In addition, when PDU (protocol data unit) length on wireless link is short, the capacity for ARQ control messages can be significantly large. GBN-ARQ, on the other hand, cannot avoid serious throughput degradation due to fairly high BER caused by multipath fading and shadowing, though its implementation is simple. To solve the above-mentioned problems, this paper proposes a novel ARQ scheme named PRIME-ARQ (Partial selective Repeat superIMposEd on gbn ARQ). PRIME-ARQ achieves high throughput performance, almost equal to selective repeat ARQ, with a simple algorithm resulting in reduced implementation complexity for high speed operation. This paper describes the design, implementation, and performance of the proposed PRIME-ARQ. In addition, it shows the experimental results using an experimental PRIME-ARQ hardware processor and proto-type AWA equipment.

  • A Hierarchical Statistical Optimization Method Driven by Constraint Generation Based on Mahalanobis' Distance

    Tomohiro FUJITA  Hidetoshi ONODERA  

     
    PAPER

      Vol:
    E84-A No:3
      Page(s):
    727-734

    This paper presents a method of statistical system optimization. The method uses a constraint generation, which is a design methodology based on a hierarchical top-down design, to give specifications to sub-circuits of the system. The specifications are generated not only to reduce the costs of sub-circuits but also to take adequate margin to achieve enough yield of the system. In order to create an appropriate amount of margin, a term which expresses a statistical figure based on Mahalanobis' distance is added to the constraint generation problem. The method is applied to a PLL, and it is confirmed that the yield of the lock-up time reaches 100% after the optimization.

  • An Effective Dynamic Priority List for 2-Processor Scheduling of Program Nets

    Qi-Wei GE  Akira TANAKA  

     
    PAPER

      Vol:
    E84-A No:3
      Page(s):
    755-762

    This paper aims at improving effectiveness of previously proposed hybrid priority lists, {L*i=LdLsi}, that are applied in nonpreemptive 2-processor scheduling of general acyclic SWITCH-less program nets, where Ld and Lsi are dynamic and static priority lists respectively. Firstly, we investigate the effectiveness of Ld through experiments. According to the experimental results, we reconstruct Ld to propose its improved list L1d. Then analyzing the construction methodology of the static priority lists {Lsi}, we propose a substituted list L2d by taking into account of the factor: remaining firing numbers of nodes. Finally, we combine a part of L1d and L2d to propose a new priority list L**. Through scheduling simulation on 400 program nets, we find the new priority list L** can generate shorter schedules, close to ones of GA (Genetic Algorithm) scheduling that has been shown exceedingly effective but costing much computation time.

  • A New Coherent Sampling System with a Triggered Time Interpolation

    Masaru KIMURA  Atsushi MINEGISHI  Kensuke KOBAYASHI  Haruo KOBAYASHI  

     
    PAPER

      Vol:
    E84-A No:3
      Page(s):
    713-719

    Equivalent-time sampling is a well-known technique to capture repetitive signals at finer time intervals than a sampling clock cycle time and it is widely used to implement waveform measurement with high time resolution. There are three techniques for implementing its time base (i.e., sequential sampling, random sampling and coherent sampling), and they have their respective advantages and disadvantages. In this paper we propose a new coherent sampling system which incorporates a pretrigger and time jitter reduction function for a fluctuating input signal which a random sampling system has, while maintaining the waveform recording efficiency of a conventional coherent sampling system. We also report on a technique for measuring a reference trigger time period accurately which is necessary to implement the proposed sampling system, and show its effectiveness through numerical calculations of its data recording time.

  • Backpropagation Algorithm for LOGic Oriented Neural Networks with Quantized Weights and Multilevel Threshold Neurons

    Takeshi KAMIO  Hisato FUJISAKA  Mititada MORISUE  

     
    PAPER

      Vol:
    E84-A No:3
      Page(s):
    705-712

    Multilayer feedforward neural network (MFNN) trained by the backpropagation (BP) algorithm is one of the most significant models in artificial neural networks. MFNNs have been used in many areas of signal and image processing due to high applicability. Although they have been implemented as analog, mixed analog-digital and fully digital VLSI circuits, it is still difficult to realize their hardware implementation with the BP learning function efficiently. This paper describes a special BP algorithm for the logic oriented neural network (LOGO-NN) which we have proposed as a sort of MFNN with quantized weights and multilevel threshold neurons. Both weights and neuron outputs are quantized to integer values in LOGO-NNs. Furthermore, the proposed BP algorithm can reduce high precise calculations. Therefore, it is expected that LOGO-NNs with BP learning can be more effectively implemented as digital type circuits than the common MFNNs with the classical BP. Finally, it is shown by simulations that the proposed BP algorithm for LOGO-NNs has good performance in terms of the convergence rate, convergence speed and generalization capability.

  • High-Speed 2-D Parallel Optical Interconnects Using Image Fibers with VCSEL/PD Arrays

    Moriya NAKAMURA  Ken-ichi KITAYAMA  

     
    PAPER-Optical Interconnection Systems

      Vol:
    E84-C No:3
      Page(s):
    282-287

    Error-free transmission of image fiber-optic two-dimensional (2-D) parallel interconnection using vertical-cavity surface-emitting laser (VCSEL)/photodiode (PD) arrays is demonstrated. Simple constructions of transmitter/receiver modules are proposed. Optical alignment is achieved without power-monitoring. Crosstalk from an adjacent channel was -34 dB. Misalignment tolerance for a BER of less than 10-9 was 85 µm. The results clearly indicate that the interconnection system built around an image fiber and 2-D VCSEL/PD arrays has promise for use in the highly parallel high-density optical interconnects of the future.

  • Manipulation of Weber-Schafheitlin Integral for Conducting Wedge

    Huen-Tae HA  Jung-Woong RA  

     
    LETTER-Antenna and Propagation

      Vol:
    E84-B No:3
      Page(s):
    691-693

    This letter presents a new transformation technique of series solution to asymptotic solution for a perfectly conducting wedge illuminated by E-polarized plane wave. This transformation gives an analytic manipulation example of the Weber-Schafheitlin integral for diffraction problem.

  • Generation of Sets of Sequences Suitable for Multicode Transmission in Quasi-Synchronous CDMA Systems

    Masato SAITO  Takaya YAMAZATO  Hiraku OKADA  Masaaki KATAYAMA  Akira OGAWA  

     
    LETTER

      Vol:
    E84-B No:3
      Page(s):
    576-580

    In this letter, we present a method to generate sets of sequences suitable for multicode transmission in quasi-synchronous (QS) CDMA systems. We focus on Gold code but extension to orthogonal Gold code is straightforward. We show that by appropriate classification of sequences, it is possible to have sets whose cross correlation is small in QS situations.

  • A Multi-Channel 90 Optical Deflection Device Using Optical Waveguides

    Yuko KAWAJIRI  Shinji KOIKE  Yoshimitsu ARAI  Yasuhiro ANDO  

     
    PAPER-Device

      Vol:
    E84-C No:3
      Page(s):
    346-350

    We propose a compact multi-channel 90 optical deflection device for short-distance optical interconnection. The device consists of stacked bent multimode optical waveguides having reflecting mirrors with bending angles of 90. The structure of the bent multimode optical waveguide with a bending angle of 90 was designed by ray-tracing simulations. The simulated insertion loss for each channel of the device was 0.5 dB. We also propose a simple fabrication process using a pair of multi-channel linear optical waveguides with symmetrical 45 mirrors. An 8-channel 90 optical deflection device was fabricated using polymer materials and basic operation was confirmed. Our device has good potential for use as a high-density optical interconnection device.

  • High-Uniformity Star Coupler Using Diffused Light Transmission

    Osamu TAKANASHI  Tsutomu HAMADA  Junji OKADA  Takeshi KAMIMURA  Hidenori YAMADA  Masao FUNADA  Takashi OZAWA  

     
    PAPER-Device

      Vol:
    E84-C No:3
      Page(s):
    339-345

    We propose a low-cost, high-uniformity, and low excess loss star coupler. The proposed star coupler comprises a planar lightguide, a diffuser, and polymer optical fibers (POFs). High-uniformity of optical power distribution was enabled by utilizing the diffused light transmission. Input light is diffused by the diffuser that is attached between the input POFs and the planar lightguide and transmitted through the planar lightguide. The optimum width-to-length ratio of the lightguide is clarified through simulations and experiments. We fabricated the star couplers based on the optimum width-to-length ratio for evaluation. The fabricated 1616 star coupler showed the excellent uniformity at the distribution ratio of 0.8 dB and the excess loss of 3.3 dB. The fabricated star coupler also provides a wide tolerance for misalignment. The maximum number of nodes to assure high transmission quality and the bandwidth of the proposed star coupler are discussed. The proposed star coupler is remarkably cost effective since it can be produced by injection-molding technology. The proposed star coupler enables easy multi-channel interconnection.

  • Optical Isolator-Modulator in a Microstrip Line on Yttrium Iron Garnet Single Crystal

    Soven K. DANA  Tetsuya UEDA  Makoto TSUTSUMI  

     
    PAPER-Device

      Vol:
    E84-C No:3
      Page(s):
    325-330

    Recently optical-microwave interactions in the yttrium iron garnet (YIG) film have been extensively studied due to its importance in the new, high speed optical signal processing devices. In this work, we present the experimental results on the simultaneous operation of optical isolator and optical modulator in a microstrip line on YIG single crystal. Optical isolation of more than 20 dB has been observed experimentally together with optical modulation by magnetostatic backward volume wave (MSBVW) in the frequency range from 1.5 GHz to 4.5 GHz. Theoretical results on the combined isolator-modulator in magneto-optic media based on the tensor form of dielectric constant are also discussed.

  • Analysis of Spatio-Temporally Coupled Pulse-Shaper by Wigner Distribution Function

    Yoshiaki YASUNO  Yasunori SUTOH  Masahiko MORI  Masahide ITOH  Toyohiko YATAGAI  

     
    PAPER-Optical Signal Processing

      Vol:
    E84-C No:3
      Page(s):
    318-324

    An improved pulse shaper is proposed which is able to control both the spatial and temporal profile of femtosecond light pulses. Our pulse shaper exploits the spatio-temporal coupling effect seen in pulse shapers. Its properties are numerically analyzed by application of the Wigner distribution function. We confirm that the spatio-temporal output pulse track dictates the differentiation of the phase mask; that the degree of spatio-temporal coupling is determined by the focal length ratio of the lenses in the pulse shaper; and that space to spatial-frequency chirp results from misalignment of lenses.

  • Real-Time Cell Arrival Sequence Estimation and Simulation for IP-over-ATM Networks

    Hiroshi SAITO  Toshiaki TSUCHIYA  Daisuke SATOH  Gyula MAROSI  Gyorgy HORVATH  Peter TATAI  Shoichiro ASANO  

     
    PAPER-Network

      Vol:
    E84-B No:3
      Page(s):
    634-643

    We have developed a new traffic measuring tool and applied it to the real-time simulation of a network. It monitors IP traffic on an ATM link and continuously transfers the length and timestamp of each IP packet to a post-processing system. The post-processing system receives the data, estimates the cell's arrival epoch at the transmission queue of the ATM link, and simulates the queueing behavior on-line if conditions differ from those of the actual system. The measuring tool and real-time simulation represent a new approach to traffic engineering. A new estimation problem, the arrival sequence estimation, is shown and some algorithms are proposed and evaluated. Also, a new dimensioning algorithm called the queue decay parameter method, which is expected to be robust and applicable to real-time control, is proposed and evaluated.

  • A High-Speed, Highly-Reliable Network Switch for Parallel Computing System Using Optical Interconnection

    Shinji NISHIMURA  Tomohiro KUDOH  Hiroaki NISHI  Koji TASHO  Katsuyoshi HARASAWA  Shigeto AKUTSU  Shuji FUKUDA  Yasutaka SHIKICHI  

     
    PAPER-Optical Interconnection Systems

      Vol:
    E84-C No:3
      Page(s):
    288-294

    RHiNET-2/SW is a network switch for the RHiNET-2 parallel computing system. RHiNET-2/SW enables high-speed and long-distance data transmission between PC nodes for parallel computing. In RHiNET-2/SW, a one-chip CMOS switch-LSI and eight pairs of 800-Mbit/s 12-channel parallel optical interconnection modules are mounted into a single compact board. This switch allows high-speed 8-Gbit/s/port parallel optical data transmission over a distance of up to 100 m, and the aggregate throughput is 64 Gbit/s/board. The CMOS-ASIC switching LSI enables high-throughput (64 Gbit/s) packet switching with a single chip. The parallel optical interconnection modules enable high-speed and low-latency data transmission over a long distance. The structure and layout of the printed circuit board is optimized for high-speed, high-density device implementation to overcome electrical problems such as signal propagation-loss and crosstalk. All of the electrical interfaces are composed of high-speed CMOS-LVDS logic (800 Mbit/s/pin). We evaluated the reliability of the optical I/O port through long-term data transmission. No errors were detected during 50 hours of continuous data transmission at a data rate of 800 Mbit/s 10 bits (BER: < 2.44 10-14). This test result shows that RHiNET-2/SW can provide high-throughput, long-transmission-length, and highly reliable data transmission in a practical parallel computing system.

  • Media Synchronization and Causality Control for Distributed Multimedia Applications

    Yutaka ISHIBASHI  Shuji TASAKA  Yoshiro TACHIBANA  

     
    PAPER-Multimedia Systems

      Vol:
    E84-B No:3
      Page(s):
    667-677

    This paper proposes a media synchronization scheme with causality control for distributed multimedia applications in which the temporal and causal relationships exist among media streams such as computer data, voice, and video. In the scheme, the Δ-causality control is performed for causality, and the Virtual-Time Rendering (VTR) algorithm, which the authors previously proposed, is used for media synchronization. The paper deals with a networked shooting game as an example of such applications and demonstrates the effectiveness of the scheme by experiment.

15581-15600hit(20498hit)