Jinfeng CHONG Niu JIANG Zepeng ZHUO Weiyu ZHANG
In this paper, we consider the spectra of Boolean functions with respect to the nega-Hadamard transform. Based on the properties of the nega-Hadamard transform and the solutions of the Diophantine equations, we investigate all possibilities of the nega-Hadamard transform of Boolean functions with exactly two distinct nega-Hadamard coefficients.
Yanjun LI Jinjie GAO Haibin KAN Jie PENG Lijing ZHENG Changhui CHEN
In this letter, we give a characterization for a generic construction of bent functions. This characterization enables us to obtain another efficient construction of bent functions and to give a positive answer on a problem of bent functions.
Zeyao LI Niu JIANG Zepeng ZHUO
In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $sum_{uin mathbb{F}_2^n,vin mathbb{F}_2^m}mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vectorial bent functions. Further, three kinds of sum-of-squares indicators of vectorial Boolean functions are defined by autocorrelation function and the lower and upper bounds of the sum-of-squares indicators are derived. Finally, we study the sum-of-squares indicators with respect to several equivalence relations, and get the sum-of-squares indicator which have the best cryptographic properties.
Tomoya FUJII Rie JINKI Yuukou HORITA
The social infrastructure, including roads and bridges built during period of rapid economic growth in Japan, is now aging, and there is a need to strategically maintain and renew the social infrastructure that is aging. On the other hand, road maintenance in rural areas is facing serious problems such as reduced budgets for maintenance and a shortage of engineers due to the declining birthrate and aging population. Therefore, it is difficult to visually inspect all roads in rural areas by maintenance engineers, and a system to automatically detect road damage is required. This paper reports practical improvements to the road damage model using YOLOv5, an object detection model capable of real-time operation, focusing on road image features.
This paper concentrates on a class of pseudorandom sequences generated by combining q-ary m-sequences and quadratic characters over a finite field of odd order, called binary generalized NTU sequences. It is shown that the relationship among the sub-sequences of binary generalized NTU sequences can be formulated as combinatorial structures called Hadamard designs. As a consequence, the combinatorial structures generalize the group structure discovered by Kodera et al. (IEICE Trans. Fundamentals, vol.E102-A, no.12, pp.1659-1667, 2019) and lead to a finite-geometric explanation for the investigated group structure.
Sung Ho AHN Gwang Min SUN Hani BAEK Byung-Gun PARK
When BJTs are irradiated by gamma rays, interface trapped charges and positive oxide trapped charges are formed by ionization at the Si-SiO2 interface and SiO2 regions, respectively. These trapped charges affect the movement of carriers depending on the type of BJT. This paper presents experimental results regarding operating characteristics of gamma irradiated pnp Si BJTs.
Zhiyao YANG Pinhui KE Zhixiong CHEN
In 2017, Tang et al. provided a complete characterization of generalized bent functions from ℤ2n to ℤq(q = 2m) in terms of their component functions (IEEE Trans. Inf. Theory. vol.63, no.7, pp.4668-4674). In this letter, for a general even q, we aim to provide some characterizations and more constructions of generalized bent functions with flexible coefficients. Firstly, we present some sufficient conditions for a generalized Boolean function with at most three terms to be gbent. Based on these results, we give a positive answer to a remaining question proposed by Hodžić in 2015. We also prove that the sufficient conditions are also necessary in some special cases. However, these sufficient conditions whether they are also necessary, in general, is left as an open problem. Secondly, from a uniform point of view, we provide a secondary construction of gbent function, which includes several known constructions as special cases.
Daming LIN Jie WANG Yundong LI
Rapid building damage identification plays a vital role in rescue operations when disasters strike, especially when rescue resources are limited. In the past years, supervised machine learning has made considerable progress in building damage identification. However, the usage of supervised machine learning remains challenging due to the following facts: 1) the massive samples from the current damage imagery are difficult to be labeled and thus cannot satisfy the training requirement of deep learning, and 2) the similarity between partially damaged and undamaged buildings is high, hindering accurate classification. Leveraging the abundant samples of auxiliary domains, domain adaptation aims to transfer a classifier trained by historical damage imagery to the current task. However, traditional domain adaptation approaches do not fully consider the category-specific information during feature adaptation, which might cause negative transfer. To address this issue, we propose a novel domain adaptation framework that individually aligns each category of the target domain to that of the source domain. Our method combines the variational autoencoder (VAE) and the Gaussian mixture model (GMM). First, the GMM is established to characterize the distribution of the source domain. Then, the VAE is constructed to extract the feature of the target domain. Finally, the Kullback-Leibler (KL) divergence is minimized to force the feature of the target domain to observe the GMM of the source domain. Two damage detection tasks using post-earthquake and post-hurricane imageries are utilized to verify the effectiveness of our method. Experiments show that the proposed method obtains improvements of 4.4% and 9.5%, respectively, compared with the conventional method.
Sho KURODA Shinya MATSUFUJI Takahiro MATSUMOTO Yuta IDA Takafumi HAYASHI
A polyphase sequence set with orthogonality consisting complex elements with unit magnitude, can be expressed by a unitary matrix corresponding to the complex Hadamard matrix or the discrete Fourier transform (DFT) matrix, whose rows are orthogonal to each other. Its matched filter bank (MFB), which can simultaneously output the correlation between a received symbol and any sequence in the set, is effective for constructing communication systems flexibly. This paper discusses the compact design of the MFB of a polyphase sequence set, which can be applied to any sequence set generated by the given logic function. It is primarily focused on a ZCZ code with q-phase or more elements expressed as A(N=qn+s, M=qn-1, Zcz=qs(q-1)), where q, N, M and Zcz respectively denote, a positive integer, sequence period, family size, and a zero correlation zone, since the compact design of the MFB becomes difficult when Zcz is large. It is shown that the given logic function on the ring of integers modulo q generating the ZCZ code gives the matrix representation of the MFB that M-dimensional output vector can be represented by the product of the unitary matrix of order M and an M-dimensional input vector whose elements are written as the sum of elements of an N-dimensional input vector. Since the unitary matrix (complex Hadamard matrix) can be factorized into n-1 unitary matrices of order M with qM nonzero elements corresponding to fast unitary transform, a compact MFB with a minimum number of circuit elements can be designed. Its hardware complexity is reduced from O(MN) to O(qM log q M+N).
Xiao-Yi ZHAO Chao-Yi DONG Peng ZHOU Mei-Jia ZHU Jing-Wen REN Xiao-Yan CHEN
The paper employed an Alexnet, which is a deep learning framework, to automatically diagnose the damages of wind power generator blade surfaces. The original images of wind power generator blade surfaces were captured by machine visions of a 4-rotor UAV (unmanned aerial vehicle). Firstly, an 8-layer Alexnet, totally including 21 functional sub-layers, is constructed and parameterized. Secondly, the Alexnet was trained with 10000 images and then was tested by 6-turn 350 images. Finally, the statistic of network tests shows that the average accuracy of damage diagnosis by Alexnet is about 99.001%. We also trained and tested a traditional BP (Back Propagation) neural network, which have 20-neuron input layer, 5-neuron hidden layer, and 1-neuron output layer, with the same image data. The average accuracy of damage diagnosis of BP neural network is 19.424% lower than that of Alexnet. The point shows that it is feasible to apply the UAV image acquisition and the deep learning classifier to diagnose the damages of wind turbine blades in service automatically.
Hadamard matrix is defined as a square matrix where any components are -1 or +1, and where any pairs of rows are mutually orthogonal. In this work, we consider the similar matrix on finite field GF(p) where p is an odd prime. In such a matrix, every component is one of the integers on GF(p){0}, that is, {1,2,...,p-1}. Any additions and multiplications should be executed under modulo p. In this paper, a method to generate such matrices is proposed. In addition, the paper includes the applications to generate n-shift orthogonal sequences and complete complementary codes. The generated complete complementary code is a family of multi-valued sequences on GF(p){0}, where the number of sequence sets, the number of sequences in each sequence set and the sequence length depend on the various divisors of p-1. Such complete complementary codes with various parameters have not been proposed in previous studies.
This letter proposes a comprehensive assessment of the mission-level damage caused by cyberattacks on an entire defense mission system. We experimentally prove that our method produces swift and accurate assessment results and that it can be applied to actual defense applications. This study contributes to the enhancement of cyber damage assessment with a faster and more accurate method.
The rotating element electric field vector (REV) method is a classical measurement technique for phased array calibration. Compared with other calibration methods, it requires only power measurements. Thus, the REV method is more reliable for operating phased array calibration systems. However, since the phase of each element must be rotated from 0 to 2π, the conventional REV method requires a large number of measurements. Moreover, the power of composite electric field vector doesn't vary significantly because only a single element's phase is rotated. Thus, it can be easily degraded by the receiver noise. A simplified REV method combined with Hadamard group division is proposed in this paper. In the proposed method, only power measurements are required. All the array elements are divided into different groups according to the group matrix derived from the normalized Hadamard matrix. The phases of all the elements in the same group are rotated at the same time, and the composite electric field vector of this group is obtained by the simplified REV method. Hence, the relative electric fields of all elements can be obtained by a matrix equation. Compared with the conventional REV method, the proposed method can not only reduce the number of measurements but also improve the measurement accuracy under the particular range of signal to noise ratio(SNR) at the receiver, especially under low and moderate SNRs.
Young-Sik KIM Hosung PARK Sang-Hyo KIM
To construct good DNA codes based on biologically motivated constraints, it is important that they have a large minimum Hamming distance and the number of GC-content is kept constant. Also, maximizing the number of codewords in a DNA code is required for given code length, minimum Hamming distance, and number of GC-content. In most previous works on the construction of DNA codes, quaternary constant weight codes were directly used because the alphabet of DNA strands is quaternary. In this paper, we propose new coding theoretic constructions of DNA codes based on the binary Hadamard matrix from a binary sequence with ideal autocorrelation. The proposed DNA codes have a greater number of codewords than or the equal number to existing DNA codes constructed from quaternary constant weight codes. In addition, it is numerically shown that for the case of codes with length 8 or 16, the number of codewords in the proposed DNA code sets is the largest with respect to the minimum reverse complementary Hamming distances, compared to all previously known results.
Qinglan ZHAO Dong ZHENG Xiangxue LI Yinghui ZHANG Xiaoli DONG
As a with-carry analog (based on modular arithmetic) of the usual Walsh-Hadamard transform (WHT), arithmetic Walsh transform (AWT) has been used to obtain analogs of some properties of Boolean functions which are important in the design and analysis of cryptosystems. The existence of nonzero linear structure of Boolean functions is an important criterion to measure the weakness of these functions in their cryptographic applications. In this paper, we find more analogs of linear structures of Boolean functions from AWT. For some classes of n-variable Boolean functions f, we find necessary and sufficient conditions for the existence of an invariant linear structure and a complementary linear structure 1n of f. We abstract out a sectionally linear relationship between AWT and WHT of n-variable balanced Boolean functions f with linear structure 1n. This result show that AWT can characterize cryptographic properties of these functions as long as WHT can. In addition, for a diagonal Boolean function f, a recent result by Carlet and Klapper says that the AWT of f can be expressed in terms of the AWT of a diagonal Boolean function of algebraic degree at most 3 in a larger number of variables. We provide for the result a complete and more modular proof which works for both even and odd weights (of the parameter c in the Corollary 19 by Carlet and Klapper (DCC 73(2): 299-318, 2014).
Qianjian XING Zhenguo MA Feng YU
This letter presents a novel memory-based architecture for radix-2 fast Walsh-Hadamard-Fourier transform (FWFT) based on the constant geometry FWFT algorithm. It is composed of a multi-function Processing Engine, a conflict-free memory addressing scheme and an efficient twiddle factor generator. The address for memory access and the control signals for stride permutation are formulated in detail and the methods can be applied to other memory-based FFT-like architectures.
Biphase periodic sequences having elements +1 or -1 with the two-level autocorrelation function are desirable in communications and radars. However, in case of the biphase orthogonal periodic sequences, Turyn has conjectured that there exist only sequences with period 4, i.e., there exist the circulant Hadamard matrices for order 4 only. In this paper, it is described that the conjecture is proved to be true by means of the isomorphic mapping, the Chinese remainder theorem, the linear algebra, etc.
Isao MIYAGAWA Yukinobu TANIGUCHI
We propose a practical method that acquires dense light transports from unknown 3D objects by employing orthogonal illumination based on a Walsh-Hadamard matrix for relighting computation. We assume the presence of color crosstalk, which represents color mixing between projector pixels and camera pixels, and then describe the light transport matrix by using sets of the orthogonal illumination and the corresponding camera response. Our method handles not only direct reflection light but also global light radiated from the entire environment. Tests of the proposed method using real images show that orthogonal illumination is an effective way of acquiring accurate light transports from various 3D objects. We demonstrate a relighting test based on acquired light transports and confirm that our method outputs excellent relighting images that compare favorably with the actual images observed by the system.
Yoshikazu TAKAHASHI Daisuke SATOH
The network operations center of a communication carrier play an important and critical role in the early stage of disaster response because its function is the maintenance of communication services, which includes traffic control and restoration of services. This paper describes traffic control and restoration of services affected by the Great East Japan Earthquake. This paper discusses challenges on traffic congestion and restoration for future large-scale disasters.
Takahiro MATSUMOTO Hideyuki TORII Yuta IDA Shinya MATSUFUJI
In this paper, we propose a new structure for a compact matched filter bank for a mutually orthogonal zero-correlation zone (MO-ZCZ) sequence set consisting of ternary sequence pairs obtained by Hadamard and binary ZCZ sequence sets; this construction reduces the number of two-input adders and delay elements. The matched filter banks are implemented on a field-programmable gate array (FPGA) with 51,840 logic elements (LEs). The proposed matched filter bank for an MO-ZCZ sequence set of length 160 can be constructed by a circuit size that is about 8.6% that of a conventional matched filter bank.