The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] EE(4079hit)

661-680hit(4079hit)

  • Retweeting Prediction Based on Social Hotspots and Dynamic Tensor Decomposition

    Qian LI  Xiaojuan LI  Bin WU  Yunpeng XIAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/01/30
      Vol:
    E101-D No:5
      Page(s):
    1380-1392

    In social networks, predicting user behavior under social hotspots can aid in understanding the development trend of a topic. In this paper, we propose a retweeting prediction method for social hotspots based on tensor decomposition, using user information, relationship and behavioral data. The method can be used to predict the behavior of users and analyze the evolvement of topics. Firstly, we propose a tensor-based mechanism for mining user interaction, and then we propose that the tensor be used to solve the problem of inaccuracy that arises when interactively calculating intensity for sparse user interaction data. At the same time, we can analyze the influence of the following relationship on the interaction between users based on characteristics of the tensor in data space conversion and projection. Secondly, time decay function is introduced for the tensor to quantify further the evolution of user behavior in current social hotspots. That function can be fit to the behavior of a user dynamically, and can also solve the problem of interaction between users with time decay. Finally, we invoke time slices and discretization of the topic life cycle and construct a user retweeting prediction model based on logistic regression. In this way, we can both explore the temporal characteristics of user behavior in social hotspots and also solve the problem of uneven interaction behavior between users. Experiments show that the proposed method can improve the accuracy of user behavior prediction effectively and aid in understanding the development trend of a topic.

  • Characterization of Hysteresis in SOI-Based Super-Steep Subthreshold Slope FETs

    Takayuki MORI  Jiro IDA  Shota INOUE  Takahiro YOSHIDA  

     
    BRIEF PAPER

      Vol:
    E101-C No:5
      Page(s):
    334-337

    We report the characterization of hysteresis in SOI-based super-steep subthreshold slope FETs, which are conventional floating body and body-tied, and newly proposed PN-body-tied structures. We found that the hysteresis widths of the PN-body-tied structures are smaller than that of the conventional floating body and body-tied structures; this means that they are feasible for switching devices. Detailed characterizations of the hysteresis widths of each device are also reported in the study, such as dependency on the gate length and the impurity concentration.

  • Object Specific Deep Feature for Face Detection

    Xianxu HOU  Jiasong ZHU  Ke SUN  Linlin SHEN  Guoping QIU  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1270-1277

    Motivated by the observation that certain convolutional channels of a Convolutional Neural Network (CNN) exhibit object specific responses, we seek to discover and exploit the convolutional channels of a CNN in which neurons are activated by the presence of specific objects in the input image. A method for explicitly fine-tuning a pre-trained CNN to induce object specific channel (OSC) and systematically identifying it for the human faces has been developed. In this paper, we introduce a multi-scale approach to constructing robust face heatmaps based on OSC features for rapidly filtering out non-face regions thus significantly improving search efficiency for face detection. We show that multi-scale OSC can be used to develop simple and compact face detectors in unconstrained settings with state of the art performance.

  • Seebeck Coefficient of Flexible Carbon Fabric for Wearable Thermoelectric Device

    Faizan KHAN  Veluswamy PANDIYARASAN  Shota SAKAMOTO  Mani NAVANEETHAN  Masaru SHIMOMURA  Kenji MURAKAMI  Yasuhiro HAYAKAWA  Hiroya IKEDA  

     
    BRIEF PAPER

      Vol:
    E101-C No:5
      Page(s):
    343-346

    We have measured the Seebeck coefficient of a carbon fabric (CAF) using a homemade measurement system for flexible thermoelectric materials to evaluate Seebeck coefficient along the thickness direction. Our equipment consists of a thermocouple (TC) electrode contacted with a resistive heater and another TC electrode attached to a heat sink. A flexible sample is sandwiched with these TC electrodes and pressed by weights. The equipment is set on a weighing machine in order to confirm and hold the pressing force at the contact between the electrodes and the soft sample. Cu and Pb plates were measured as a reference material to calibrate and clarify the accuracy of our measurement system, and its validity was confirmed. The Seebeck coefficient of a single CAF layer ranged 4.3-5.1 µV/K, independent of extra weight. This fact indicates that the weight of heat sink is enough for stable contact at the TC-electrode/CAF interface. It was found that the Seebeck coefficient of layered CAF increases with an increase in the number of layers, which suggests the influence of the air between the CAF layers even though the heavy weight is used.

  • Throughput and Delay Analysis of IEEE 802.11 String-Topology Multi-Hop Network in TCP Traffic with Delayed ACK

    Kosuke SANADA  Hiroo SEKIYA  Kazuo MORI  

     
    PAPER-Network

      Pubricized:
    2017/11/20
      Vol:
    E101-B No:5
      Page(s):
    1233-1245

    This paper aims to establish expressions for IEEE 802.11 string-topology multi-hop networks with transmission control protocol (TCP) traffic flow. The relationship between the throughput and transport-layer function in string-topology multi-hop network is investigated. From the investigations, we obtain an analysis policy that the TCP throughput under the TCP functions is obtained by deriving the throughput of the network with simplified into two asymmetric user datagram protocol flows. To express the asymmetry, analytical expressions in medium access control-, network-, and transport layers are obtained based on the airtime expression. The expressions of the network layer and those of transport layer are linked using the “delayed ACK constraint,” which is a new concept for TCP analysis. The analytical predictions agree well with the simulation results, which prove the validity of the obtained analytical expressions and the analysis policy in this paper.

  • Efficient Methods for Aggregate Reverse Rank Queries

    Yuyang DONG  Hanxiong CHEN  Kazutaka FURUSE  Hiroyuki KITAGAWA  

     
    PAPER

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1012-1020

    Given two data sets of user preferences and product attributes in addition to a set of query products, the aggregate reverse rank (ARR) query returns top-k users who regard the given query products as the highest aggregate rank than other users. ARR queries are designed to focus on product bundling in marketing. Manufacturers are mostly willing to bundle several products together for the purpose of maximizing benefits or inventory liquidation. This naturally leads to an increase in data on users and products. Thus, the problem of efficiently processing ARR queries become a big issue. In this paper, we reveal two limitations of the state-of-the-art solution to ARR query; that is, (a) It has poor efficiency when the distribution of the query set is dispersive. (b) It has to process a large portion user data. To address these limitations, we develop a cluster-and-process method and a sophisticated indexing strategy. From the theoretical analysis of the results and experimental comparisons, we conclude that our proposals have superior performance.

  • Hardware Accelerated Marking for Mark & Sweep Garbage Collection

    Shinji KAWAMURA  Tomoaki TSUMURA  

     
    PAPER-Computer System

      Pubricized:
    2018/01/15
      Vol:
    E101-D No:4
      Page(s):
    1107-1115

    Many mobile systems need to achieve both high performance and low memory usage, and the total performance of such the systems can be largely affected by the effectiveness of GC. Hence, the recent popularization of mobile devices makes the GC performance play one of the important roles on the wide range of platforms. The response performance degradation caused by suspending all processes for GC has been a well-known potential problem. Therefore, GC algorithms have been actively studied and improved, but they still have not reached any fundamental solution. In this paper, we focus on the point that the same objects are redundantly marked during the GC procedure implemented on DalvikVM, which is one of the famous runtime environments for the mobile devices. Then we propose a hardware support technique for improving marking routine of GC. We installed a set of tables to a processor for managing marked objects, and redundant marking for marked objects can be omitted by referring these tables. The result of the simulation experiment shows that the percentage of redundant marking is reduced by more than 50%.

  • Having an Insight into Malware Phylogeny: Building Persistent Phylogeny Tree of Families

    Jing LIU  Pei Dai XIE  Meng Zhu LIU  Yong Jun WANG  

     
    LETTER-Information Network

      Pubricized:
    2018/01/09
      Vol:
    E101-D No:4
      Page(s):
    1199-1202

    Malware phylogeny refers to inferring evolutionary relationships between instances of families. It has gained a lot of attention over the past several years, due to its efficiency in accelerating reverse engineering of new variants within families. Previous researches mainly focused on tree-based models. However, those approaches merely demonstrate lineage of families using dendrograms or directed trees with rough evolution information. In this paper, we propose a novel malware phylogeny construction method taking advantage of persistent phylogeny tree model, whose nodes correspond to input instances and edges represent the gain or lost of functional characters. It can not only depict directed ancestor-descendant relationships between malware instances, but also show concrete function inheritance and variation between ancestor and descendant, which is significant in variants defense. We evaluate our algorithm on three malware families and one benign family whose ground truth are known, and compare with competing algorithms. Experiments demonstrate that our method achieves a higher mean accuracy of 61.4%.

  • A Deep Learning-Based Approach to Non-Intrusive Objective Speech Intelligibility Estimation

    Deokgyu YUN  Hannah LEE  Seung Ho CHOI  

     
    LETTER-Speech and Hearing

      Pubricized:
    2018/01/09
      Vol:
    E101-D No:4
      Page(s):
    1207-1208

    This paper proposes a deep learning-based non-intrusive objective speech intelligibility estimation method based on recurrent neural network (RNN) with long short-term memory (LSTM) structure. Conventional non-intrusive estimation methods such as standard P.563 have poor estimation performance and lack of consistency, especially, in various noise and reverberation environments. The proposed method trains the LSTM RNN model parameters by utilizing the STOI that is the standard intrusive intelligibility estimation method with reference speech signal. The input and output of the LSTM RNN are the MFCC vector and the frame-wise STOI value, respectively. Experimental results show that the proposed objective intelligibility estimation method outperforms the conventional standard P.563 in various noisy and reverberant environments.

  • Sequential Convolutional Residual Network for Image Recognition

    Wonjun HWANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1213-1216

    In this letter, we propose a sequential convolutional residual network, where we first analyze a tangled network architecture using simplified equations and determine the critical point to untangle the complex network architecture. Although the residual network shows good performance, the learning efficiency is not better than expected at deeper layers because the network is excessively intertwined. To solve this problem, we propose a network in which the information is transmitted sequentially. In this network architecture, the neighboring layer output adds the input of the current layer and iteratively passes its result to the next sequential layer. Thus, the proposed network can improve the learning efficiency and performance by successfully mitigating the complexity in deep networks. We show that the proposed network performs well on the Cifar-10 and Cifar-100 datasets. In particular, we prove that the proposed method is superior to the baseline method as the depth increases.

  • Broadband Sleeve Dipole Antenna with Consistent Gain in the Horizontal Direction

    Takatsugu FUKUSHIMA  Naobumi MICHISHITA  Hisashi MORISHITA  Naoya FUJIMOTO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/10/06
      Vol:
    E101-B No:4
      Page(s):
    1061-1068

    This paper improves radiation patterns and impedance matching of a broadband sleeve dipole antenna. A broadband sleeve dipole antenna is designed and the effect of the structure parameters on the |S11| characteristics is calculated. Current distributions of the resonance frequencies are calculated. A broadband sleeve dipole antenna with plate element is proposed. Better impedance matching is obtained by adjusting the size of the plate element. The nulls of the radiation patterns are reduced at high frequencies and the gain in the horizontal direction is improved.

  • Cyber-Physical Hybrid Environment Using a Largescale Discussion System Enhances Audiences' Participation and Satisfaction in the Panel Discussion

    Satoshi KAWASE  Takayuki ITO  Takanobu OTSUKA  Akihisa SENGOKU  Shun SHIRAMATSU  Tokuro MATSUO  Tetsuya OISHI  Rieko FUJITA  Naoki FUKUTA  Katsuhide FUJITA  

     
    PAPER-Creativity Support Systems and Decision Support Systems

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    847-855

    Performance based on multi-party discussion has been reported to be superior to that based on individuals. However, it is impossible that all participants simultaneously express opinions due to the time and space limitations in a large-scale discussion. In particular, only a few representative discussants and audiences can speak in conventional unidirectional discussions (e.g., panel discussion), although many participants gather for the discussion. To solve these problems, in this study, we proposed a cyber-physical discussion using “COLLAGREE,” which we developed for building consensus of large-scale online discussions. COLLAGREE is equipped with functions such as a facilitator, point ranking system, and display of discussion in tree structure. We focused on the relationship between satisfaction with the discussion and participants' desire to express opinions. We conducted the experiment in the panel discussion of an actual international conference. Participants who were audiences in the floor used COLLAGREE during the panel discussion. They responded to questionnaires after the experiment. The main findings are as follows: (1) Participation in online discussion was associated with the satisfaction of the participants; (2) Participants who desired to positively express opinions joined the cyber-space discussion; and (3) The satisfaction of participants who expressed opinions in the cyber-space discussion was higher than those of participants who expressed opinions in the real-space discussion and those who did not express opinions in both the cyber- and real-space discussions. Overall, active behaviors in the cyber-space discussion were associated with participants' satisfaction with the entire discussion, suggesting that cyberspace provided useful alternative opportunities to express opinions for audiences who used to listen to conventional unidirectional discussions passively. In addition, a complementary relationship exists between participation in the cyber-space and real-space discussions. These findings can serve to create a user-friendly discussion environment.

  • Visual Analysis of Geometry Constrained Large-Scale Network

    Zhonghua YAO  Lingda WU  Yang SUN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/10/17
      Vol:
    E101-B No:4
      Page(s):
    1000-1009

    Due to the structure complexity, it is difficult to display structure of large-scale network fully. To solve the problem, this paper research on network simplification and accelerating drawing. Specific research content includes accelerated network layout based on quadtree and community geometric constrain, aiming to provide overall situation perception of network topology. Experiment results show that this method can quickly visualize complex structure of large-scale network, and present overall situation and structural characteristics of the network by clear and understandable visual expression, and contribute to mining and awareness of network connection mode and structural characteristics.

  • Nested Circular Array and Its Concentric Extension for Underdetermined Direction of Arrival Estimation

    Thomas BASIKOLO  Koichi ICHIGE  Hiroyuki ARAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/10/17
      Vol:
    E101-B No:4
      Page(s):
    1076-1084

    In this paper, a new array geometry is proposed which is capable of performing underdetermined Direction-Of-Arrival (DOA) estimation for the circular array configuration. DOA estimation is a classical problem and one of the most important techniques in array signal processing as it has applications in wireless and mobile communications, acoustics, and seismic sensing. We consider the problem of estimating DOAs in the case when we have more sources than the number of physical sensors where the resolution must be maintained. The proposed array geometry called Nested Sparse Circular Array (NSCA) is an extension of the two level nested linear array obtained by nesting two sub-circular arrays and one element is placed at the origin. In order to extend the array aperture, a Khatri-Rao (KR) approach is applied to the proposed NSCA which yields the virtual array structure. To utilize the increase in the degrees of freedom (DOFs) that this new array provides, a subspace based approach (MUSIC) for DOA estimation and l1-based optimization approach is extended to estimate DOAs using NSCA. Simulations show that better performance for underdetermined DOA estimation is achieved using the proposed array geometry.

  • Stock Price Prediction by Deep Neural Generative Model of News Articles

    Takashi MATSUBARA  Ryo AKITA  Kuniaki UEHARA  

     
    PAPER-Datamining Technologies

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    901-908

    In this study, we propose a deep neural generative model for predicting daily stock price movements given news articles. Approaches involving conventional technical analysis have been investigated to identify certain patterns in past price movements, which in turn helps to predict future price movements. However, the financial market is highly sensitive to specific events, including corporate buyouts, product releases, and the like. Therefore, recent research has focused on modeling relationships between these events that appear in the news articles and future price movements; however, a very large number of news articles are published daily, each article containing rich information, which results in overfitting to past price movements used for parameter adjustment. Given the above, we propose a model based on a generative model of news articles that includes price movement as a condition, thereby avoiding excessive overfitting thanks to the nature of the generative model. We evaluate our proposed model using historical price movements of Nikkei 225 and Standard & Poor's 500 Stock Index, confirming that our model predicts future price movements better than such conventional classifiers as support vector machines and multilayer perceptrons. Further, our proposed model extracts significant words from news articles that are directly related to future stock price movements.

  • Sentiment Classification for Hotel Booking Review Based on Sentence Dependency Structure and Sub-Opinion Analysis

    Tran Sy BANG  Virach SORNLERTLAMVANICH  

     
    PAPER-Datamining Technologies

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    909-916

    This paper presents a supervised method to classify a document at the sub-sentence level. Traditionally, sentiment analysis often classifies sentence polarity based on word features, syllable features, or N-gram features. A sentence, as a whole, may contain several phrases and words which carry their own specific sentiment. However, classifying a sentence based on phrases and words can sometimes be incoherent because they are ungrammatically formed. In order to overcome this problem, we need to arrange words and phrase in a dependency form to capture their semantic scope of sentiment. Thus, we transform a sentence into a dependency tree structure. A dependency tree is composed of subtrees, and each subtree allocates words and syllables in a grammatical order. Moreover, a sentence dependency tree structure can mitigate word sense ambiguity or solve the inherent polysemy of words by determining their word sense. In our experiment, we provide the details of the proposed subtree polarity classification for sub-opinion analysis. To conclude our discussion, we also elaborate on the effectiveness of the analysis result.

  • A Transmission Control Protocol for Long Distance High-Speed Wireless Communications

    Yohei HASEGAWA  Jiro KATTO  

     
    PAPER-Network

      Pubricized:
    2017/10/17
      Vol:
    E101-B No:4
      Page(s):
    1045-1054

    This paper proposes a transmission control protocol (TCP) for long distance high-speed wireless communications, including free-space optical communications (FSOC). Extreme high frequency of wireless communications enables high-speed bit rate, but frequent signal error, including burst error, can be a quite severe problem for ordinary high-speed TCPs. To achieve 10Gbps or higher data transfer throughput on FSOC, the proposed TCP (designated “TCP-FSO”) has improved and new features including multi-layer congestion control, retransmission control with packet loss point estimation, delay-based ACK congestion control, and ACK retransmission control. We evaluated data transfer throughput of TCP-FSO and the other TCPs, by throughput model analysis and experiment on real implementation. Obtained results show that TCP-FSO achieves far higher data transfer throughput than other high-speed TCPs. For example, it achieved a thousand times higher throughput than the other high-speed TCPs in a real FSOC environment.

  • A 7GS/s Complete-DDFS-Solution in 65nm CMOS

    Abdel MARTINEZ ALONSO  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E101-C No:4
      Page(s):
    206-217

    A 7GS/s complete-DDFS-solution featuring a two-times interleaved RDAC with 1.2Vpp-diff output swing was fabricated in 65nm CMOS. The frequency tuning and amplitude resolutions are 24-bits and 10-bits respectively. The RDAC includes a mixed-signal, high-speed architecture for random swapping thermometer coding dynamic element matching that improves the narrowband SFDR up to 8dB for output frequencies below 1.85GHz. The proposed techniques enable a 7 GS/s operation with a spurious-free dynamic range better than 32dBc over the full Nyquist bandwidth. The worst case narrowband SFDR is 42dBc. This system consumes 87.9mW/(GS/s) from a 1.2V power supply when the RSTC-DEM method is enabled, resulting in a FoM of 458.9GS/s·2(SFDR/6)/W. A proof-of-concept chip with an active area of only 0.22mm2 was measured in prototypes encapsulated in a 144-pins low profile quad flat package.

  • Performance Evaluation of Pipeline-Based Processing for the Caffe Deep Learning Framework

    Ayae ICHINOSE  Atsuko TAKEFUSA  Hidemoto NAKADA  Masato OGUCHI  

     
    PAPER

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1042-1052

    Many life-log analysis applications, which transfer data from cameras and sensors to a Cloud and analyze them in the Cloud, have been developed as the use of various sensors and Cloud computing technologies has spread. However, difficulties arise because of the limited network bandwidth between such sensors and the Cloud. In addition, sending raw sensor data to a Cloud may introduce privacy issues. Therefore, we propose a pipelined method for distributed deep learning processing between sensors and the Cloud to reduce the amount of data sent to the Cloud and protect the privacy of users. In this study, we measured the processing times and evaluated the performance of our method using two different datasets. In addition, we performed experiments using three types of machines with different performance characteristics on the client side and compared the processing times. The experimental results show that the accuracy of deep learning with coarse-grained data is comparable to that achieved with the default parameter settings, and the proposed distributed processing method has performance advantages in cases of insufficient network bandwidth between realistic sensors and a Cloud environment. In addition, it is confirmed that the process that most affects the overall processing time varies depending on the machine performance on the client side, and the most efficient distribution method similarly differs.

  • Frame-Based Representation for Event Detection on Twitter

    Yanxia QIN  Yue ZHANG  Min ZHANG  Dequan ZHENG  

     
    PAPER-Natural Language Processing

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1180-1188

    Large scale first-hand tweets motivate automatic event detection on Twitter. Previous approaches model events by clustering tweets, words or segments. On the other hand, event clusters represented by tweets are easier to understand than those represented by words/segments. However, compared to words/segments, tweets are sparser and therefore makes clustering less effective. This article proposes to represent events with triple structures called frames, which are as efficient as, yet can be easier to understand than words/segments. Frames are extracted based on shallow syntactic information of tweets with an unsupervised open information extraction method, which is introduced for domain-independent relation extraction in a single pass over web scale data. This is then followed by bursty frame element extraction functions as feature selection by filtering frame elements with bursty frequency pattern via a probabilistic model. After being clustered and ranked, high-quality events are yielded and then reported by linking frame elements back to frames. Experimental results show that frame-based event detection leads to improved precision over a state-of-the-art baseline segment-based event detection method. Superior readability of frame-based events as compared with segment-based events is demonstrated in some example outputs.

661-680hit(4079hit)