The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ELF(569hit)

401-420hit(569hit)

  • A Photonic IP Switching Technique Using Code Division Multiplexing

    Shouhei NISHI  Isamu SAEKI  Hideki TODE  Koso MURAKAMI  

     
    PAPER

      Vol:
    E83-B No:10
      Page(s):
    2321-2330

    Increasing the capacity and intelligence of the next-generation Internet requires the application of optical technologies to switching nodes as well as transmission lines, and the development of advanced network architectures with end-to-end connection setup processing at the source node and autonomous routing at intermediate nodes. In the present paper, we design a new CDM-based switching scheme and node configurations that are suitable for a photonic IP switching system, in which a set of multiple-encoding CDM codes is utilized as routing information. In addition, we calculate the BER characteristics of the multiple-encoding CDM system by simulation. Under the condition that the chip duration of a certain code is a multiple of that of another code, the BER characteristics of the multiple-encoding system are shown to coincide with that of the single-encoding system by the longer code.

  • Fault-Tolerant and Self-Stabilizing Protocols Using an Unreliable Failure Detector

    Hiroyoshi MATSUI  Michiko INOUE  Toshimitsu MASUZAWA  Hideo FUJIWARA  

     
    PAPER-Algorithms

      Vol:
    E83-D No:10
      Page(s):
    1831-1840

    We investigate possibility of fault-tolerant and self-stabilizing protocols (ftss protocols) using an unreliable failure detector. Our main contribution is (1) to newly introduce k-accuracy of an unreliable failure detector, (2) to show that k-accuracy of a failure detector is necessary for any ftss k-group consensus protocol, and (3) to present three ftss k-group consensus protocols using a k-accurate and weakly complete failure detector under the read/write daemon on complete networks and on (n-k+1)-connected networks, and under the central daemon on complete networks.

  • Constructing Quantum Error-Correcting Codes for pm-State Systems from Classical Error-Correcting Codes

    Ryutaroh MATSUMOTO  Tomohiko UYEMATSU  

     
    PAPER-Coding Theory

      Vol:
    E83-A No:10
      Page(s):
    1878-1883

    We generalize the construction of quantum error-correcting codes from F4-linear codes by Calderbank et al. to pm-state systems. Then we show how to determine the error from a syndrome. Finally we discuss a systematic construction of quantum codes with efficient decoding algorithms.

  • Proposal of Radio-over-Fiber Systems Using Cascaded Radio-to-Optic Direct Conversion Scheme

    Pat SUWONPANICH  Katsutoshi TSUKAMOTO  Shozo KOMAKI  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1766-1774

    This paper newly proposes radio-over-fiber systems using cascaded radio-to-optic direct conversion (ROC) scheme. The ROC system can convert a radio signal into an optical signal with the same signal format. The received carrier-to-noise ratio (CNR) performance of the radio-over-fiber systems using the ROC/heterodyne detection (HD) scheme and the ROC/self-heterodyne detection (SHD) scheme are theoretically analyzed. The optimization of an optical modulation index (OMI) in each radio base station (RBS) is also presented. By using the proposed OMI optimization method, the ROC/HD and the ROC/SHD schemes are shown to provide approximately 16 dB and 14 dB improvement over the intensity modulation/direct detection scheme when the number of RBS is 20 and the radio-frequency (RF) signal bandwidth is 150 MHz, respectively. The ROC/SHD scheme enables a receiver structure to become simple while still achieving high received CNR.

  • Diffusion Model for Multimedia and Mobile Traffic Based on Population Process for Active Users in a Micro-Cell

    Shin'ichiro SHINOMIYA  Masaki AIDA  Kazuyoshi SAITOH  Noriteru SHINAGAWA  Takehiko KOBAYASHI  

     
    PAPER

      Vol:
    E83-B No:8
      Page(s):
    1827-1833

    Recent development of compact and powerful portable computers and mobile phones and proliferation of the Internet will enable mobile multimedia communications. From the viewpoint of implementing multimedia services into mobile communications, it allows us to predict that traffic characteristics of mobile networks change. For planning, designing, and operating mobile multimedia networks, it is important to investigate traffic models which take the effect of multimedia services into consideration. This paper investigates population of active users in a micro-cell and proposes a traffic model for mobile multimedia networks. This model describes a population process of active users in a micro-cell in diffusion model, and its characteristics include self-similarity and activity of mobility. We also made an evaluation of network performance by using simulation, in order to show that characteristics of the proposed traffic model have impact on planning and designing networks.

  • Accelerated Image Halftoning Technique Using Improved Genetic Algorithm

    Hernan AGUIRRE  Kiyoshi TANAKA  Tatsuo SUGIMURA  

     
    PAPER-Image/Visual Signal Processing

      Vol:
    E83-A No:8
      Page(s):
    1566-1574

    This paper presents an accelerated image halftoning technique using an improved genetic algorithm with tiny populations. The algorithm is based on a new cooperative model for genetic operators in GA. Two kinds of operators are used in parallel to produce offspring: (i) SRM (Self-Reproduction with Mutation) to introduce diversity by means of Adaptive Dynamic-Block (ADB) mutation inducing the appearance of beneficial mutations. (ii) CM (Crossover and Mutation) to promote the increase of beneficial mutations in the population. SRM applies qualitative mutation only to the bits inside a mutation block and controls the required exploration-exploitation balance through its adaptive mechanism. An extinctive selection mechanism subjects SRM's and CM's offspring to compete for survival. The simulation results show that our scheme impressively reduces computer memory and processing time required to obtain high quality halftone images. For example, compared to the conventional image halftoning technique with GA, the proposed algorithm using only a 2% population size required about 15% evaluations to generate high quality images. The results make our scheme appealing for practical implementations of the image halftoning technique using GA.

  • An FPGA Implementation of a Self-Reconfigurable System for the 1 1/2 Track-Switch 2-D Mesh Array with PE Faults

    Tadayoshi HORITA  Itsuo TAKANAMI  

     
    LETTER-Fault Tolerance

      Vol:
    E83-D No:8
      Page(s):
    1701-1705

    We gave in [1] the software and hardware algorithms for reconfiguring 1 1/2-track switch 2-D mesh arrays with faults of processing elements, avoiding them. This paper shows an implementation of the hardware algorithm using an FPGA device, and by the logical simulation confirms the correctness of the behavior and evaluates reconfiguration time. From the result it is found that a self-repairable system is realizable and the system is useful for the run-time as well as fabrication-time reconfiguration because it requires no host computer to execute the reconfiguration algorithm and the reconfiguration time is very short.

  • A Coordination Based Restoring Algorithm for High Speed Broadband Networks

    Ardian GRECA  Kiyoshi NAKAGAWA  

     
    PAPER-Network

      Vol:
    E83-B No:7
      Page(s):
    1517-1526

    A highly reliable and available network which automatically can restore itself from failures is an important concept for the future high capacity broadband networks. Self-healing algorithm, restoring the failed VPs (Virtual Paths) in the backbone ATM networks, is an indispensable technique to meet these requirements. In this paper we propose a coordination-based restoring self-healing algorithm called C-TRUS, which meets different requirements of service classes of survivability by using a simple rerouting and capacity reserving protocols. The simulation results show that the proposed algorithm can restore VPs quickly and improve the restoration time in case of multi-failures by using network resources very efficiently. Furthermore, C-TRUS outperforms the combination method in both restoration ratio and restoration time. In addition, the significant improvement of restoration ratio in the multi-failure scenario has been achieved.

  • The Packet-Recognition of Header for All-Optical Self-Routing

    Ki-Hwan PARK  Tetsuya MIZUMOTO  

     
    LETTER-Wireless Communication Switching

      Vol:
    E83-B No:7
      Page(s):
    1577-1579

    We have proposed and demonstrated the circuit, which collectively recognizes header. Comparing with conventional schemes, the proposed circuit consists of simple structure. The proposed recognition circuit enables fast all-optical self-routing and contributes to reduce the buffer size for temporary data storage in each switch.

  • Formation of Ultra-Thin Organic Films by Micelle-Wrapping Sequential Adsorption Method

    Seimei SHIRATORI  Takahiro ITO  

     
    PAPER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1094-1098

    Layer-by-layer sequential adsorption process of polyelectrolytes had conventionally been used for the fabrication of the ultra-thin organic film formed by various polymers with different polarity of charge. In this study, hydrophobic Ruthenium complex monomer (tris (bilyridyl) ruthenium (II) hexafluorophosphate) was micelle-wrapped with an anionic surfactant, sodium dodecylbenzenesulfonate, and was assembled with PAH (poly (allylamine hydrochloride)) which has the opposite charge on ITO substrates. With this method, we succeed in fabricating ultra-thin organic films even when the adsorption material is not polymer but monomer. Moreover it was found that the bilayer thickness of the self-assembled (Ru micelle/PAH) was systematically changed by adjusting the solution pH of each bath. By using this process, EL device was fabricated by depositing the thin film of micelle-wrapping ruthenium complex monomer on ITO and formed Bi electrode on top of the film. Light emission was observed by applying voltage to this device.

  • Fabrication of Coplanar Microstructures Composed of Multiple Organosilane Self-Assembled Monolayers

    Hiroyuki SUGIMURA  Atsushi HOZUMI  Osamu TAKAI  

     
    PAPER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1099-1103

    Micropatterning of organosilane self-assembled monolayers (SAMs) was demonstrated on the basis of photolithography using an excimer lamp radiating vacuum ultra-violet (VUV) light of 172 nm in wavelength. This lithography is generally applicable to micropatterning of organic thin films including alkyl and fluoroalkyl SAMs, since its patterning mechanism involves cleavage of C-C bonds in organic molecules and subsequent decomposition of the molecules. In this study, SAMs were prepared on Si substrates covered with native oxide by chemical vapor deposition in which an alkylsilane, that is, octadecyltrimethoxysilane [CH3(CH2)17Si(OCH3)3, ODS] or a fluoroalkylsilane, that is, 1H, 1H, 2H, 2H-perfluorodecyltrimethoxy-silane [CF3(CF2)7CH2CH2Si(OCH3)3, FAS] were used as precursors. Each of these SAMs was photoirradiated through a photomask placed on its surface. As confirmed by atomic force microscopy and x-ray photoelectron spectroscopy, the SAMs were decomposed and removed in the photoirradiated area while the masked areas remained undecomposed. A micropattern of 2 µm in width was successfully fabricated. Furthermore, microstructures composed of two different SAMs, that is, ODS and FAS, were fabricated as follows. For example, an ODS-SAM was first micropatterned by the VUV-lithography. Since, the VUV-exposed region on the ODS-SAM showed an affinity to the chemisorption of organosilane molecules, the second SAM, i. e. , FAS, confined to the photolithographically defined pattern was successfully fabricated. Due to the electron negativity of F atoms, the FAS covered region showed a more negative surface potential than that of the ODS surface: its potential difference was ca. 120 mV as observed by Kelvin probe force microscopy.

  • A Distributed Approach against Computer Viruses Inspired by the Immune System

    Takeshi OKAMOTO  Yoshiteru ISHIDA  

     
    PAPER-Communication and Computer Architecture/Assurance Systems

      Vol:
    E83-B No:5
      Page(s):
    908-915

    More than forty thousands computer viruses have appeared so far since the first virus. Six computer viruses on average appear every day. Enormous expansion of the computer network opened a thread of explosive spread of computer viruses. In this paper, we propose a distributed approach against computer virus using the computer network that allows distributed and agent-based approach. Our system is composed of an immunity-based system similar to the biological immune system and recovery system similar to the recovery mechanism by cell division. The immunity-based system recognizes "non-self" (which includes computer viruses) using the "self" information. The immunity-based system uses agents similar to an antibody, a natural killer cell and a helper T-cell. The recover system uses a copy agent which sends an uninfected copy to infected computer on LAN, or receives from uninfected computer on LAN. We implemented a prototype with JAVATM known as a multi-platform language. In experiments, we confirmed that the proposed system works against some of existing computer viruses that can infect programs for MS-DOSTM.

  • OTA-C Based BIST Structure for Analog Circuits

    Cheng-Chung HSU  Wu-Shiung FENG  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E83-A No:4
      Page(s):
    771-773

    In this letter, a novel built-in self-test (BIST) structure based on operational transconductance amplifiers and grounded capacitors (OTA-Cs) for the fault diagnosis of analog circuits is proposed. The proposed analog BIST structure, namely ABIST, can be used to increase the number of test points, sampling and controlling of all test points with voltage data, and making less time for test signal observable. Experimental measurements have been made to verify that the proposed ABIST structure is effective.

  • Matter-Conserved Replication Causes Computational Universality

    Kosaku INAGAKI  

     
    LETTER-General Fundamentals and Boundaries

      Vol:
    E83-A No:3
      Page(s):
    579-580

    Signal conservation logic (SCL) is a model of logic for the physical world subject to the matter conservation law. This letter proves that replication, complementary replication, and computational universality called elemental universality are equivalent in SCL. Since intelligence has a close relation to computational universality, the presented theorem may mean that life under the matter conservation law eventually acquires some kind of intelligence.

  • Fault-Tolerance of Distributed Algorithms: Self-Stabilization and Wait-Freedom

    Toshimitsu MASUZAWA  Michiko INOUE  

     
    INVITED SURVEY PAPER-Parallel and Distributed Algorithms

      Vol:
    E83-D No:3
      Page(s):
    550-560

    Distributed computation has attracted considerable attention and large-scale distributed systems have been designed and developed. A distributed system inherently has possibility of fault tolerance because of its redundancy. Thus, a great deal of investigation has been made to design fault-tolerant distributed algorithms. This paper introduces two promising paradigms, self-stabilization and wait-freedom, for designing fault-tolerant distributed algorithms and discusses some subjects important from the point of view of algorithm engineering.

  • New Self-Healing Scheme that Realizes Differentiated Bandwidth Requirement on ATM Networks

    Taishi YAHARA  Ryutaro KAWAMURA  Satoru OHTA  

     
    PAPER-Signaling System and Communication Protocol

      Vol:
    E83-B No:3
      Page(s):
    672-679

    This paper proposes a new self-healing scheme that differentiates the bandwidth requirement for each network service on ATM networks. First, we show the necessity of our proposed scheme. In the future network, we must satisfy two demands, rapid restoration from failure and differentiated bandwidth requirements. The conventional restoration scheme, called the self-healing scheme, realizes rapid restoration, but does not support bandwidth differentiation; the new self-healing scheme proposed herein does. We also show that the proposed scheme reduces the spare resources required for backup. The scheme can be realized as a simple extension of the conventional self-healing scheme. Finally, simulations show that the proposed scheme requires fewer spare resources while offering comparable restoration time to the conventional approach against any demand pattern.

  • Optical Fiber Humidity Sensor with a Fast Response Time Using the Ionic Self-Assembly Method

    Francisco J. ARREGUI  Kristie L. COOPER  Yanjing LIU  Ignacio R. MATIAS  Richard O. CLAUS  

     
    PAPER-Chemical, Environmental, Biochemical and Medical Sensors

      Vol:
    E83-C No:3
      Page(s):
    360-365

    An optical fiber humidity sensor was fabricated forming a nanometer-scale Fabry-Perot interferometer by using the Ionic Self-Assembly Monolayer (ISAM) method. The materials used were Poly R-478 and poly(diallyldimethyl ammonium chloride). Taking advantage of the precision that the ISAM method can achieve in controlling the length of the nano cavity, the length was fit to obtain a maximum variation of 8.7 dB of reflected optical power between 11.3% and 85% RH. The sensor exhibited a fast response time and was able to monitor the human breathing.

  • A Method for Finding the Direction of Arrival of a Single Short Pulse by the Waveform Reconstruction

    Masanori ISHII  Takashi IWASAKI  

     
    PAPER-EMC Measurement and Test

      Vol:
    E83-B No:3
      Page(s):
    453-459

    In this paper, a method for finding the direction of arrival (DOA) of a single short pulse is proposed. The method is based on a waveform reconstruction technique using complex antenna factors (CAF). Since the frequency characteristics of CAF has angle dependency, the DOA of an electromagnetic pulse can be determined by the waveforms reconstructed with CAF. The results of a simulation and an experiment show the possibility to apply the two-dimensional DOA finding.

  • Preplanned Restoration and Optimal Capacity Placement on ATM Multicast Tree

    Yih-Fuh WANG  Jen-Fa HUANG  

     
    PAPER-Traffic Control and Network Management

      Vol:
    E83-B No:2
      Page(s):
    281-292

    The ATM multicast Tree (AMT) is the Mbone of video/audio conferencing and other multicasting applications in ATM (Asynchronous Transfer Mode) networks. However, real problems such as temporarily moving switches, changing optic fiber connections and/or tangible/intangible failures of ATM networks will cause many service disruptions. Thus we must carefully consider the system's SQOS (Survivable QOS) when we construct the system. A point-to-point self-healing scheme utilizing a conventional pre-planned backup mechanism is proposed to protect the AMT from failure. This scheme uses point-to-point pre-planned backup Root-to-Leaf Routes (RLR) as the root-to-leaf structure of an AMT. Though AMT protection via preplanned backup RLR requires no search time, duplicate paths may cause redundant bandwidth consumption. This paper also proposes a closest-node method, which can locate the minimum-length route structure during the initial design and also rebuild the AMT in the event of a network failure. To enhance the survivability of the system, we introduce two near optimal re-routing algorithms, a most-decent search algorithm, and also a predictive-decent search algorithm in order to find the minimum lost flow requirement. These near optimal schemes use search technique to guide the local optimal lost flow to the most-decent lost flow direction. The predictive way is an especially economical technique to reduce the calculation complexity of lost flow function. For the evaluation of the feasibility and performance of the new schemes, we simulate AMT restoration and the simulation results show the closest-node scheme provides superior AMT restoration compared to a system with a preplanned point-to-point backup scheme. In addition, the predictive-decent search algorithm is faster than the most-decent search one.

  • Knowledge Discovery and Self-Organizing State Space Model

    Tomoyuki HIGUCHI  Genshiro KITAGAWA  

     
    INVITED PAPER

      Vol:
    E83-D No:1
      Page(s):
    36-43

    A hierarchical structure of the statistical models involving the parametric, state space, generalized state space, and self-organizing state space models is explained. It is shown that by considering higher level modeling, it is possible to develop models quite freely and then to extract essential information from data which has been difficult to obtain due to the use of restricted models. It is also shown that by rising the level of the model, the model selection procedure which has been realized with human expertise can be performed automatically and thus the automatic processing of huge time series data becomes realistic. In other words, the hierarchical statistical modeling facilitates both automatic processing of massive time series data and a new method for knowledge discovery.

401-420hit(569hit)