The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ELF(569hit)

541-560hit(569hit)

  • An Autocorrelation Associative Neural Network with Self-Feedbacks

    Hiroshi UEDA  Masaya OHTA  Akio OGIHARA  Kunio FUKUNAGA  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2072-2075

    In this article, the autocorrelation associative neural network that is one of well-known applications of neural networks is improved to extend its capacity and error correcting ability. Our approach of the improvement is based on the consideration that negative self-feedbacks remove spurious states. Therefore, we propose a method to determine the self-feedbacks as small as possible within the range that all stored patterns are stable. A state transition rule that enables to escape oscillation is also presented because the method has a possibility of falling into oscillation. The efficiency of the method is confirmed by means of some computer simulations.

  • Power Line Radiation over Eastern Asia Observed by the Satellite OHZORA

    Ichiro TOMIZAWA  Takeo YOSHINO  

     
    PAPER-Antennas and Propagation

      Vol:
    E76-B No:11
      Page(s):
    1456-1469

    Statistically improved results of power line radiation (PLR) over Eastern Asia observed at 50 and 60Hz are described in this paper. A total number of 150 orbits, which had been observed from June 1984 to January 1986, by the Japanese scientific satellite OHZORA, are used to detect PLR over Eastern Asia around the Japanese Islands. Depending on the increase in the number of data points, the statistical characteristics of the background noise can be precisely determined by using the improved technique compared with the initial analysis. Statistically reasonable data points are detected as PLR based on the +3 criterion, where is the standard deviation of the background noise. Therefore, the statistical reliability for rejecting the background noise is 99.85%. Then, these detected data are applied to the cause-and-effect test. When the statistically detected data points are placed on the map of Eastern Asia, the points cover Eastern Japan and the east coast of China for 50Hz, and they cover Western Japan for 60 Hz. The maps of the detection ratios and those of the average field strengths indicate the positive correlation with the ground maps of the electric power generation at 50 and 60 Hz. The positive correlation is more clearly seen at 50Hz since the background noise is somewhat weaker than that at 60Hz. This close relationship between the satellite observation and the electric power generation suggests that the detection of PLR is not caused by chance, and that PLR penetrates into the ionosphere and propagates approximately just upward. The decrease of field strength with altitude can be interpreted as the gradual decrease of the refractive index from 400 to 700km. Therefore, the detection ratio and the average field strength with respect to the satellite altitude suggest PLR propagating from the bottom of the ionosphere. According to these observational results, it is concluded that PLR in Eastern Asia is high above the high electric power generating regions over Japan and China, and that the satellite observation is capable of estimating PLR field below the ionosphere. These results are the first direct indication that the PLR field is enhanced over the high electric power generation region, and is penetrating into the ionosphere.

  • Design of High Speed 88-Port Self-Routing Switch on Multi-Chip Module

    Hiroshi YASUKAWA  

     
    LETTER-Optical Communication

      Vol:
    E76-B No:11
      Page(s):
    1474-1477

    The design of a high speed self-routing network switch module is described. Clock distribution and timing design to achieve high-speed operation are considered. A 88-port self-routing Benes network switch prototype on multi-chip module is fabricated using 44-port space division switch LSIs. The switch module achieves a maximum measured clock frequency of 750MHz under switching operation. Resultant total throughput of the switch module is 12Gbit/s.

  • IC-Oriented Self-Aligned High-Performance AlGaAs/GaAs Ballistic Collection Transistors and Their Applications to High-Speed ICs

    Yutaka MATSUOKA  Shoji YAMAHATA  Satoshi YAMAGUCHI  Koichi MURATA  Eiichi SANO  Tadao ISHIBASHI  

     
    PAPER

      Vol:
    E76-C No:9
      Page(s):
    1392-1401

    This paper describes IC-oriented high-performance AlGaAs/GaAs heterojunction bipolar transistors that were fabricated to demonstrate their great potential in applications to high-speed integrated circuits. A collector structure of ballistic collection transistors with a launcher (LBCTs) shortens the intrinsic delay time of the transistors. A novel and simple self-aligned fabrication process, which features an base-metal-overlaid structure (BMO), reduces emitter- and base-resistances and collector capacitance. The combination of the thin-collector LBCT layer structure and the BMO self-alignment technology raises the average value of cutoff frequency, fT, to 160 GHz with a standard deviation as small as 4.3 GHz. By modifying collector thickness and using Pt/Ti/Pt/Au as the base ohmic contact metal in BMO-LBCTs, the maximum oscillation frequency, fmax, reaches 148 GHz with a 114 GHz fT. A 2:1 multiplexer with retiming D-type flip-flops (DFFs) at input/output stages fabricated on a wafer with the thin-collector LBCT structure operates at 19 Gbit/s. A monolithic preamplifier fabricated on the same wafer has a transimpedance of 52 dBΩ with a 3-dB-down bandwidth of 18.5 GHz and a gain S21 OF 21 dB with a 3-dB-down bandwidth of 19 GHz. Finally, a 40 Gbit/s selector IC and a 50 GHz dynamic frequency divider that were successfully fabricated using the 148-GHz fmax technologies are described.

  • Major Factors Affecting Fiber-Optic Transmission System Design for Radio Base Stations

    Toshiyuki TSUCHIYA  Takashi SHIRAISHI  Junro ARATA  

     
    PAPER-Equipment and Device Matters

      Vol:
    E76-B No:9
      Page(s):
    1136-1144

    A fiber-optic transmission system for linking radio base stations to the mobile communication center is developed, and its performance is evaluated. The introduction of this system yields two main improvements: optimum zone allocation to increase radio frequency utilization efficiency and the elimination of service quality issues such as dead zones and traffic imbalance. Being optical, the system suffers from the interferometric noise and distortion created by multiple reflections within the fiber. Moreover, because system response is much different from that of optical CATV systems, we clarify the optical parameter selection criteria and hypothetical return loss model for an embedded fiber infrastructure. An optical multiplexing method is also introduced that reduces the quantity of fiber and connectors, as well as splicing and cable installation costs. A new ternary optical multiplexing architecture combined with a cost-effective self-tuning type WDM technique and a high isolation type circulator are proposed for the 1.3µm wavelength region. The performance of low distortion high power common amplifiers is measured with the aim of reducing the size and weight of back-up batteries, and to improve the packaging density of the typical base station.

  • Novel Narrowband Interference Rejection for an Asynchronous Spread Spectrum Wireless Modem Using a SAW Convolver

    Hiroyuki NAKASE  Kazuo TSUBOUCHI  

     
    PAPER

      Vol:
    E76-B No:8
      Page(s):
    947-954

    An asynchronous spread spectrum (SS) wireless modem has been implemented using an efficient ZnO-SiO2-Si surface acoustic wave (SAW) convolver. The modem is based on a direct-sequence/frequency-shift-keying (DS/FSK) method for the modulation. The demodulation is carried out asynchronously utilizing the coherent correlation characteristics of the SAW convolver. In order to improve the narrowband interference rejection capability, we propose a new technique based on the reference signal control. A notched-reference-signal circuit and a self-convolution canceler are implemented in the SS modem for the reference signal control. It was found that the antijam capability for narrowband interference is at least -24dB of desired-to-undesired power ratio (D/U); the improvement of the antijam capability is 16dB up as compared with our previous SS modem.

  • Two-Pattern Test Capabilities of Autonomous TGP Circuits

    Kiyoshi FURUYA  Edward J. McCLUSKEY  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    800-808

    A method to analyze two-pattern test capabilities of autonomous test pattern generator (TPG) circuits for use in built-in self-testing are described. The TPG circuits considered here include arbitrary autonomous linear sequential circuits in which outputs are directly fed out from delay elements. Based on the transition matrix of a circuit, it is shown that the number of distinct transitions in a subspace of state variables can be obtained from rank of the submatrix. The two-pattern test capabilities of LFSRs, cellular automata, and their fast parallel implementation are investigated using the transition coverage as a metric. The relationships with dual circuits and reciprocal circuits are also mentioned.

  • Improvement of the Isolation Characteristics of a Two-Layer Self-Diplexing Array Antenna Using a Circularly Polarized Ring Patch Antenna

    Wataru CHUJO  Masayuki FUJISE  Hiroyuki ARAI  Naohisa GOTO  

     
    LETTER

      Vol:
    E76-B No:7
      Page(s):
    755-758

    In a two-layer self-diplexing antenna fed at two ports, theoretical analysis has already shown that the isolation characteristics can be improved by adjusting the angle between the feed locations of the transmitting and receiving antennas. In this letter, we experimentally investigate the isolation characteristics of the self-diplexing array antenna. First, calculated and experimental results for each feed location of the element antenna are compared and good agreement is found. Second, experimental results with a 19-element planar array indicate that a self-diplexing antenna with suitably chosen feed configuration is effective in improving the isolation in a phased array antenna.

  • Parallel VLSI Architecture for Multi-Layer Self-Organizing Cellular Network

    Yoshikazu MIYANAGA  Koji TOCHINAI  

     
    PAPER-Neural Networks and Chips

      Vol:
    E76-C No:7
      Page(s):
    1174-1181

    This paper proposes a multi-layer cellular network in which a self-organizing method is implemented. The network is developed for the purpose of data clustering and recognition. A multi-layer structure is presented to realize the sophisticated combination of several sub-spaces which are spanned by given input characteristic data. A self-organizing method is useful for evaluating the set of clusters for input data without a supervisor. Thus, using these techniques this network can provide good clustering ability as an example for image/pattern data which have complicated and structured characteristics. In addition to the development of this algorithm, this paper also presents a parallel VLSI architecture for realizing the mechanism with high efficiency. Since the locality can be kept among all processing elements on every layer, the system is easily designed without large global data communication.

  • Numerical Verification of Algebraic Non-integrability for High Dimensional Dynamical Systems

    Hisa-Aki TANAKA  Shin'ichi OISHI  Atsushi OKADA  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1117-1120

    The singular point analysis, such as the Painlev test and Yoshida's test, is a computational method and has been implemented in a symbolic computational manner. But, in applying the singular point analysis to high dimensional and/or "complex" dynamical systems, we face with some computational difficulties. To cope with these difficulties, we propose a new numerical technique of the singular point analysis with the aid of the self-validating numerics. Using this technique, the singular point analysis can now be applicable to a wide class of high dimensional and/or "complex" dynamical systems, and in many cases dynamical properties such as the algebraic non-integrability can be proven for such systems.

  • Minimum Test Set for Locally Exhaustive Testing of Multiple Output Combinational Circuits

    Hiroyuki MICHINISHI  Tokumi YOKOHIRA  Takuji OKAMOTO  

     
    PAPER

      Vol:
    E76-D No:7
      Page(s):
    791-799

    The locally exhaustive testing of multiple output combinational circuits is the test which provides exhaustive test patterns for each set of inputs on which each output depends. First, this paper presents a sufficient condition under which a minimum test set (MLTS) for the locally exhaustive testing has 2w test patterns, where w is the maximum number of inputs on which any output depends. Next, we clarify that any CUT with up to four outputs satisfies the condition, independently of w and n, where n is the number of inputs of the CUT. Finally, we clarify that any CUT with five outputs also satisfies the condition for 1w2 or n2wn.

  • Natural Laws and Information Processing

    Yasuji SAWADA  

     
    INVITED PAPER

      Vol:
    E76-C No:7
      Page(s):
    1064-1069

    We discuss possible new principles of information processing by utilizing microscopic, semi-microscopic and macroscopic phenomena occuring in nature. We first discuss quantum mechanical universal information processing in microscopic world governed by quantum mechanics, and then we discuss superconducting phenomena in a mesoscopic system, especially an information processing system using flux quantum. Finally, we discuss macroscopic self-organizing phenomena in biology and suggest possibility of self-organizing devices.

  • L* Learning: A Fast Self-Organizing Feature Map Learning Algorithm Based on Incremental Ordering

    Young Pyo JUN  Hyunsoo YOON  Jung Wan CHO  

     
    PAPER-Bio-Cybernetics

      Vol:
    E76-D No:6
      Page(s):
    698-706

    The self-organizing feature map is one of the most widely used neural network paradigm based on unsupervised competitive learning. However, the learning algorithm introduced by Kohonen is very slow when the size of the map is large. The slowness is caused by the search for large map in each training steps of the learning. In this paper, a fast learning algorithm based on incremental ordering is proposed. The new learning starts with only a few units evenly distributed on a large topological feature map, and gradually increases the number of units until it covers the entire map. In middle phases of the learning, some units are well-ordered and others are not, while all units are weekly-ordered in Kohonen learning. The ordered units, during the learning, help to accelerate the search speed of the algorithm and accelerate the movements of the remaining unordered units to their topological locations. It is shown by theoretical analysis as well as experimental analysis that the proposed learning algorithm reduces the training time from O(M2) to O(log M) for M by M map without any additional working space, while preserving the ordering properties of the Kohonen learning algorithm.

  • Environment-Dependent Self-Organization of Positional Information in Coupled Nonlinear Oscillator System--A New Principle of Real-Time Coordinative Control in Biological Distributed System--

    Yoshihiro MIYAKE  Yoko YAMAGUCHI  Masafumi YANO  Hiroshi SHIMIZU  

     
    LETTER-Neural Nets--Theory and Applications--

      Vol:
    E76-A No:5
      Page(s):
    780-785

    The mechanism of environment-dependent self-organization of "positional information" in a coupled nonlinear oscillator system is proposed as a new principle of realtime coordinative control in biological distributed system. By modeling the pattern formation in tactic response of Physarum plasmodium, it is shown that a global phase gradient pattern self-organized by mutual entrainment encodes not only the positional relationship between subsystems and the total system but also the relative relationship between internal state of the system and the environment.

  • Unsupervised Learning of 3D objects Conserving Global Topological Order

    Jinhui CHAO  Kenji MINOWA  Shigeo TSUJII  

     
    PAPER-Neural Nets--Theory and Applications--

      Vol:
    E76-A No:5
      Page(s):
    749-753

    The self-organization rule of planar neural networks has been proposed for learning of 2D distributions. However, it cannot be applied to 3D objects. In this paper, we propose a new model for global representation of the 3D objects. Based on this model, global topology reserving self-organization is achieved using parallel local competitive learning rule such as Kohonen's maps. The proposed model is able to represent the objects distributively and easily accommodate local features.

  • High Speed Sub-Half Micron SATURN Transistor Using Epitaxial Base Technology

    Hirokazu FUJIMAKI  Kenichi SUZUKI  Yoshio UMEMURA  Koji AKAHANE  

     
    PAPER-Device Technology

      Vol:
    E76-C No:4
      Page(s):
    577-581

    Selective epitaxial growth technology has been extended to the base formation of a transistor on the basis of the SATURN (Self-Alignment Technology Utilizing Reserved Nitride) process, a high-speed bipolar LSI processing technology. The formation of a self-aligned base contact, coupled with SIC (Selective Ion-implanted Collector) fabricated by lowenergy ion implantation, has not only narrowed the transistor active regions but has drastically reduced the base width. A final base width of 800 and a maximum cut-off frequency of 31 GHz were achieved.

  • Self-Aligned Aluminum-Gate MOSFET's Having Ultra-Shallow Junctions Formed by 450 Furnace Annealing

    Koji KOTANI  Tadahiro OHMI  Satoshi SHIMONISHI  Tomohiro MIGITA  Hideki KOMORI  Tadashi SHIBATA  

     
    PAPER-Device Technology

      Vol:
    E76-C No:4
      Page(s):
    541-547

    Self-aligned aluminum-gate MOSFET's have been successfully fabricated by employing ultraclean ion implantation technology. The use of ultra high vacuum ion implanter and the suppression of high-energy ion-beam-induced metal sputter contamination have enabled us to form ultra-shallow low-leakage pn junctions by furnace annealing at a temperature as low as 450. The fabricated aluminum-gate MOSFET's have exhibited good electrical characteristics, thus demonstrating a large potential for application to realizing ultra-high-speed integrated circuits.

  • A 4 GHz Thin-Base Lateral Bipolar Transistor Fabricated on Bonded SOI

    Naoshi HIGAKI  Tetsu FUKANO  Atsushi FUKURODA  Toshihiro SUGII  Yoshihiro ARIMOTO  Takashi ITO  

     
    PAPER-SOI Devices

      Vol:
    E75-C No:12
      Page(s):
    1453-1458

    We fabricated a 4 GHz thin-base (120 nm) lateral bipolar transistor on bonded SOI by applying our sidewall self-aligning base process. By applying this device to BiCMOS circuits, bipolar transistor base junction capacitance, and MOSFET source and drain capacitance were very small. Furthermore, MOSFET and bipolar transistors are completely isolated from each other. Thus, it is easy to optimize MOS and bipolar processes, and provide protection from latch-up problems and soft errors caused by α-particles. In this paper, we describe device characteristics and discuss the crystal quality degradation introduced by ion implantation, and two dimensional effects of base diffusion capacitance.

  • Layered Self-Organizing Packet Radio Networks

    Akira ISHIDA  Jae-Gyu YOO  Miki YAMAMOTO  Hiromi OKADA  Yoshikazu TEZUKA  

     
    PAPER

      Vol:
    E75-A No:12
      Page(s):
    1720-1726

    In this paper, we propose a new network organizing method for packet radio networks, a layered self-organizing method. In the layered self-organizing network, whole service area is divided into multiple sub-areas and one base station is settled in each sub-area. Communication links are settled in shorter time than the conventional self-organizing method. We evaluate the network organizing performance of the method by using simulations.

  • A Method and the Effect of Shuffling Compactor Inputs in VLSI Self-Testing

    Kiyoshi FURUYA  Edward J. McCLUSKEY  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    842-846

    Signature analysis using a Multiple-Input LFSR as the output response compaction circuit is widely adopted in actual BIST schemes. While aliasing probabilities for random errors are usually very small, MI-LFSRs are tend to fail detecting diagonal errors. A spot error, which include the diagonal error as a particular case, is defined as multiple bit crrors adjacent in space and in time domain. Then, shuffling of interconnection between CUT output and MI-LFSR input is studied as a scheme to prevent aliasing for such errors. The condition for preventing aliasing due to a predetermined size of single spot error is shown. Block based shuffling and the shortened one are proposed to realize required distance properties. Effect of shuffling for multiple spot errors is examined by simulation showing that shuffling is effective also for a certain extend of multiple spot errors.

541-560hit(569hit)