The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IDT(386hit)

141-160hit(386hit)

  • Delay Analysis and Optimization of Bandwidth Request under Unicast Polling in IEEE 802.16e over Gilbert-Elliot Error Channel

    Eunju HWANG  Kyung Jae KIM  Frank ROIJERS  Bong Dae CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3827-3835

    In the centralized polling mode in IEEE 802.16e, a base station (BS) polls mobile stations (MSs) for bandwidth reservation in one of three polling modes; unicast, multicast, or broadcast pollings. In unicast polling, the BS polls each individual MS to allow to transmit a bandwidth request packet. This paper presents an analytical model for the unicast polling of bandwidth request in IEEE 802.16e networks over Gilbert-Elliot error channel. We derive the probability distribution for the delay of bandwidth requests due to wireless transmission errors and find the loss probability of request packets due to finite retransmission attempts. By using the delay distribution and the loss probability, we optimize the number of polling slots within a frame and the maximum retransmission number while satisfying QoS on the total loss probability which combines two losses: packet loss due to the excess of maximum retransmission and delay outage loss due to the maximum tolerable delay bound. In addition, we obtain the utilization of polling slots, which is defined as the ratio of the number of polling slots used for the MS's successful transmission to the total number of polling slots used by the MS over a long run time. Analysis results are shown to well match with simulation results. Numerical results give examples of the optimal number of polling slots within a frame and the optimal maximum retransmission number depending on delay bounds, the number of MSs, and the channel conditions.

  • Scalable Parallel Interface for Terabit LAN

    Shoukei KOBAYASHI  Yoshiaki YAMADA  Kenji HISADOME  Osamu KAMATANI  Osamu ISHIDA  

     
    PAPER

      Vol:
    E92-B No:10
      Page(s):
    3015-3021

    We propose a scalable parallel interface that provides an ideal aggregated bandwidth link for an application. The scalable parallel interface uses time information to align packets and allows dynamic lane and/or path change, a large difference in transmission delays among lanes, and so on. The basic performance of the scalable parallel interface in 10 Gb/s 2 lanes is verified using an estimation board that is newly developed to evaluate the basic functions used in a Terabit LAN. The evaluation shows that the scalable parallel interface achieves a very low delay variation that is almost the same as that under back-to-back conditions. The difference in the delay variation between the scalable parallel interface and the back-to-back condition is approximately 10 ns when the transmission delay time varies from 10 µs to 1 s.

  • Two-Phase Cycle DBA (TCDBA) for Differentiated Services on EPON

    Hye Kyung LEE  Won-Jin YOON  Tae-Jin LEE  Hyunseung CHOO  Min Young CHUNG  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:9
      Page(s):
    2823-2837

    The Ethernet passive optical network (EPON), which is one of the PON technologies for realizing FTTx (Fiber-To-The-Curb/Home/Office), is a low-cost and high-speed solution to the bottleneck problem that occurs between a backbone network and end users. The EPON is compatible with existing customer devices that are equipped with an Ethernet card. To effectively control frame transmission from optical network units (ONUs) to an optical line termination (OLT), the EPON can use a multi-point control protocol (MPCP) with control functions in addition to the media access control (MAC) protocol function. In this paper, we propose a two-phase cycle dynamic bandwidth allocation (TCDBA) algorithm to increase the channel utilization on the uplink by allowing frame transmissions during computation periods, and combine the TCDBA algorithm with the queue management schemes performed within each ONU, in order to effectively support differentiated services. Additionally, we perform simulations to validate the effectiveness of the proposed algorithm. The results show that the proposed TCDBA algorithm improves the maximum throughput, average transmission delay, and average volume of frames discarded, compared with the existing algorithms. Furthermore, the proposed TCDBA algorithm is able to support differentiated quality of services (QoS).

  • Overall Resource Efficiency Measure of Digital Modulation Methods

    Jinzhu LIU  Lianfeng SHEN  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E92-B No:9
      Page(s):
    2948-2950

    A coordinate plane representation of the resource requirements of digital modulation methods is presented, and an overall resource efficiency measure is proposed. This measure can be used for the comparison of digital modulation methods and the evaluation of an emerging modulation technique. Several typical digital modulation methods are compared based on this measure to show its validity.

  • Scheduling Algorithm to Provide QoS over a Shared Wireless Link

    Augusto FORONDA  Chikara OHTA  Hisashi TAMAKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:6
      Page(s):
    2160-2167

    Several scheduling algorithms have been proposed for the downlink of a Code Division Multiple Access (CDMA) system with High Data Rate (HDR). Modified Largest Weighted Delay First (M-LWDF) scheduling algorithm selects a user according to the user current channel condition, user head-of-line packet delay and user Quality of Service (QoS) requirement. Proportional Fair (PF) scheduling algorithm has also been proposed for CDMA/HDR system and it selects a user according to the ratio of the user current channel rate and the user average channel rate, which provides good performance in terms of fairness. However, when variable bit rate (VBR) traffic is considered under different channel conditions for each user, both schedulers' performance decrease. M-LWDF scheduler can not guarantee the QoS requirement to be achieved and PF scheduler can not achieve a good fairness among the users. In this work, we propose a new scheduling algorithm to enhance M-LWDF and PF schedulers performance. Proposed scheduler selects a user according to the user input traffic characteristic, user current channel condition and user QoS requirement, which consists of a delay value with a maximum violation probability. We consider the well-known effective bandwidth expression, which takes into account the user QoS requirement and the user input traffic characteristics, to select a user to be scheduled. Properties of the proposed scheduling algorithm are investigated through simulations with constant bit rate (CBR) and VBR flows and performance comparisons with M-LWDF and PF schedulers. The results show a better performance of the proposed scheduler compared with M-LWDF and PF schedulers.

  • Investigations on Physical Random Access Channel Structure in Evolved UTRA Uplink

    Yoshihisa KISHIYAMA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1688-1694

    This paper presents the optimum physical random access channel (PRACH) structure in terms of the number of control signaling bits accommodated and the transmission bandwidth based on the link budget in order to satisfy the coverage requirement for the single-carrier (SC)-FDMA based E-UTRA uplink. First, we present the design concept of the PRACH structure considering the purposes of the random access procedure in the E-UTRA. Simulation evaluations including a system-level simulation show that a PRACH comprising a 0.5-msec preamble sequence can convey a 6-bit control signal at the cell edge when the inter-site distance (ISD) is 500 m under full channel load conditions with one-cell frequency reuse. It is also shown, however, that a PRACH longer than one-sub-frame, e.g., 1.0 msec, is necessary to support the ISD of 1732 m assuming the same conditions. We also show that the best transmission bandwidth for the PRACH is approximately 1.08-4.5 MHz from the viewpoint of the misdetection probability, and a 1.08-MHz transmission bandwidth is suitable considering other aspects such as flexible resource assignment in the time domain and a small number of options in the transmission bandwidth.

  • Reducing On-Chip DRAM Energy via Data Transfer Size Optimization

    Takatsugu ONO  Koji INOUE  Kazuaki MURAKAMI  Kenji YOSHIDA  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    433-443

    This paper proposes a software-controllable variable line-size (SC-VLS) cache architecture for low power embedded systems. High bandwidth between logic and a DRAM is realized by means of advanced integrated technology. System-in-Silicon is one of the architectural frameworks to realize the high bandwidth. An ASIC and a specific SRAM are mounted onto a silicon interposer. Each chip is connected to the silicon interposer by eutectic solder bumps. In the framework, it is important to reduce the DRAM energy consumption. The specific DRAM needs a small cache memory to improve the performance. We exploit the cache to reduce the DRAM energy consumption. During application program executions, an adequate cache line size which produces the lowest cache miss ratio is varied because the amount of spatial locality of memory references changes. If we employ a large cache line size, we can expect the effect of prefetching. However, the DRAM energy consumption is larger than a small line size because of the huge number of banks are accessed. The SC-VLS cache is able to change a line size to an adequate one at runtime with a small area and power overheads. We analyze the adequate line size and insert line size change instructions at the beginning of each function of a target program before executing the program. In our evaluation, it is observed that the SC-VLS cache reduces the DRAM energy consumption up to 88%, compared to a conventional cache with fixed 256 B lines.

  • Enhanced Shared-TDD Based Hybrid WDM/TDM-PON with Dynamic Bandwidth Allocation Scheme

    Bokrae JUNG  Min-Gon KIM  Byong-Whi KIM  Minho KANG  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:4
      Page(s):
    1166-1172

    Although wavelength division multiplexing-passive optical network (WDM-PON) is known as a high-speed transfer, it creates high channel costs per subscriber and low bandwidth utilization due to the fact that a wavelength is dedicated to each subscriber. Thus, it is imperative to reduce channel costs per subscriber and improve the bandwidth utilization. To achieve these, we first adopt a existing WDM-PON, which uses the bidirectional transmission with a single source for cost-efficiency by employing a gain-saturated reflective semiconductor optical amplifier (RSOA). Secondly, based on the existing WDM-PON, we propose an enhanced hybrid WDM/TDM-PON, which can extend the number of subscribers supported in each wavelength with splitters in the physical layer and a shared-time division duplex (TDD) frame format in the media access control (MAC) layer. Moreover, it can adaptively control the bandwidth through a dynamic bandwidth allocation (DBA) scheme according to the volume of traffic. Compared to the non TDD-based hybrid WDM/TDM-PON, it can reduce channel costs per subscriber from the extended number of subscribers supported in each wavelength. Furthermore, due to the DBA, it can improve the total queueing delay and throughput, and thus increase the bandwidth utilization.

  • Effectiveness of Overlay Routing Based on Delay and Bandwidth Information

    Go HASEGAWA  Yuichiro HIRAOKA  Masayuki MURATA  

     
    PAPER-Network

      Vol:
    E92-B No:4
      Page(s):
    1222-1232

    Recent research on overlay networks has revealed that user-perceived network performance, such as end-to-end delay performance, could be improved by an overlay routing mechanism. However, these studies consider only end-to-end delay, and few studies have focused on bandwidth-related information, such as available bandwidth and TCP throughput, which are important performance metrics especially for long-lived data transmission. In the present paper, we investigate the effect of overlay routing both delay and bandwidth-related information, based on the measurement results of network paths between PlanetLab nodes. We consider three metrics for selecting the overlay route: end-to-end delay, available bandwidth, and TCP throughput. We then show that the available bandwidth-based overlay routing provides significant gain, as compared with delay-based routing. We further reveal the correlation between the latency and available bandwidth of the overlay paths and propose several guidelines for selecting an overlay path.

  • Improvement of Speech Quality in Distance-Based Howling Canceller

    Akira SOGAMI  Arata KAWAMURA  Youji IIGUNI  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1039-1046

    In this paper, we propose a distance-based howling canceller with high speech quality. We have developed a distance-based howling canceller that uses only distance information by noticing the property that howling occurs according to the distance between a loudspeaker and a microphone. This method estimates the distance by transmitting a pilot signal from the loudspeaker to the microphone. Multiple frequency candidates for each howling are computed from the estimated distance and eliminated by cascading notch filters that have nulls at them. However degradation of speech quality occurs at the howling canceller output. The first cause is a shot noise occurrence at the beginning and end of the pilot signal transmission due to the discontinuous change of the amplitude. We thus develop a new pilot signal that is robust against ambient noises. We can then reduce the shot noise effect by taking the amplitude small. The second one is a speech degradation caused from overlapped stopbands of the notch filters. We thus derive a condition on the bandwidths so that stopbands do not overlap, and propose an adaptive bandwidth scheme which changes the bandwidth according to the distance.

  • Direction-Aware Time Slot Assignment for Largest Bandwidth in Slotted Wireless Ad Hoc Networks

    Jianping LI  Yasushi WAKAHARA  

     
    PAPER-Network

      Vol:
    E92-B No:3
      Page(s):
    858-866

    Slotted wireless ad hoc networks are drawing more and more attention because of their advantage of QoS (Quality of Service) support for multimedia applications owing to their collision-free packet transmission. Time slot assignment is an unavoidable and important problem in such networks. The existing time slot assignment methods have in general a drawback of limited available bandwidth due to their local assignment optimization without the consideration of directions of the radio wave transmission of wireless links along the routes in such networks. A new time slot assignment is proposed in this paper in order to overcome this drawback. The proposed assignment is different from the existing methods in the following aspects: a) consideration of link directions during time slot assignment; b) largest bandwidth to be achieved; c) feasibility in resource limited ad hoc networks because of its fast assignment. Moreover, the effectiveness of the proposal is confirmed by some simulation results.

  • Real-Time Support on IEEE 802.11 Wireless Ad-Hoc Networks: Reality vs. Theory

    Mikyung KANG  Dong-In KANG  Jinwoo SUH  

     
    PAPER

      Vol:
    E92-B No:3
      Page(s):
    737-744

    The usable throughput of an IEEE 802.11 system for an application is much less than the raw bandwidth. Although 802.11b has a theoretical maximum of 11 Mbps, more than half of the bandwidth is consumed by overhead leaving at most 5 Mbps of usable bandwidth. Considering this characteristic, this paper proposes and analyzes a real-time distributed scheduling scheme based on the existing IEEE 802.11 wireless ad-hoc networks, using USC/ISI's Power Aware Sensing Tracking and Analysis (PASTA) hardware platform. We compared the distributed real-time scheduling scheme with the real-time polling scheme to meet deadline, and compared a measured real bandwidth with a theoretical result. The theoretical and experimental results show that the distributed scheduling scheme can guarantee real-time traffic and enhances the performance up to 74% compared with polling scheme.

  • A Robust Broad-Band Beamformer with Spatial and Frequency Derivative Constraints

    Yi CHU  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:2
      Page(s):
    567-577

    In this paper, we propose a set of constraints for adaptive broad-band beamforming in the presence of angular errors. We first present spatial and frequency derivative constraints (SFDC) for the design of the quiescent beamformer response. With the wavelet-based blocking matrices, the proposed generalized sidelobe canceller (GSC) preserves the desired signal, and it is less sensitive to the broad-band noise. To make this beamformer more robust to the directional mismatch, we add a pseudo-interference algorithm in the weight adaptive process. Analysis and simulation results demonstrate that the angular beamwidth is insensitive to the input signal-to-noise ratio (SNR).

  • Wide-Range Motion Estimation Architecture with Dual Search Windows or High Resolution Video Coding

    Lan-Rong DUNG  Meng-Chun LIN  

     
    PAPER-Embedded, Real-Time and Reconfigurable Systems

      Vol:
    E91-A No:12
      Page(s):
    3638-3650

    This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2 dB for 720 p HDTV clips coded at 8 Mbits/sec.

  • Cache Optimization for H.264/AVC Motion Compensation

    Sangyong YOON  Soo-Ik CHAE  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E91-D No:12
      Page(s):
    2902-2905

    In this letter, we propose a cache organization that substantially reduces the memory bandwidth of motion compensation (MC) in the H.264/AVC decoders. To reduce duplicated memory accesses to P and B pictures, we employ a four-way set-associative cache in which its index bits are composed of horizontal and vertical address bits of the frame buffer and each line stores an 8 2 pixel data in the reference frames. Moreover, we alleviate the data fragmentation problem by selecting its line size that equals the minimum access size of the DDR SDRAM. The bandwidth of the optimized cache averaged over five QCIF IBBP image sequences requires only 129% of the essential bandwidth of an H.264/AVC MC.

  • Dynamic Bandwidth Allocation Performance for Dual QoS Classes in Resilient Packet Ring

    Yasuyuki OKUMURA  

     
    PAPER-Network

      Vol:
    E91-B No:10
      Page(s):
    3226-3231

    This paper proposes an improved dynamic bandwidth allocation algorithm for dual Quality of Service (QoS) classes to maximize the utilization rate of the Resilient Packet Ring (RPR). To achieve dynamic bandwidth allocation for the two QoS classes in the RPR, each node measures the high priority traffic flow and assigns the appropriate bandwidth; the remaining bandwidth is used for low priority traffic. It passes a control frame containing the measured bandwidth of the high priority traffic to the other nodes. Based on the advertised high priority traffic bandwidth, any node that is congested transmits, to the other nodes, a fairness message to fairly allocate the remaining low priority bandwidth. Simulations demonstrate that the proposed algorithm enhances the utilization rate and reduces the delay of high priority frames.

  • Dynamic Two-Tier Cell Structure for Bandwidth Reservation of Handoffs in Cellular Networks

    Jae Keun PARK  Wan Yeon LEE  Sung Je HONG  Jong KIM  

     
    LETTER-Mobile Information Network

      Vol:
    E91-A No:10
      Page(s):
    3003-3005

    To satisfy both the bandwidth efficiency of low-speed mobile hosts (MHs) and seamless handoff of high-speed MHs in cellular networks, this paper proposes a reservation scheme which exploits a dynamic two-tier cell structure and the handoff probability. The dynamic two-tier cell structure determines the reservation and non-reservation zones according to the speed of MHs. The handoff probability is calculated using the moving speed and the direction of MHs.

  • Enhanced Class-of-Service Oriented Packet Scheduling Scheme for EPON Access Networks

    Intark HAN  Hong-Shik PARK  Man-Soo HAN  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:10
      Page(s):
    3334-3337

    A fast class-of-service oriented packet scheduling (FCOPS) has a service fairness problem since a credit pool for a service class is initialized at the beginning of a transmission cycle whose starting moment is fixed at a specific ONU. To remedy the service unfairness of FCOPS, we suggest an enhanced class-of-service oriented packet scheduling (ECOPS) that uses a new initialization cycle whose starting moment is fairly distributed to each ONU. Also, ECOPS generates a colorless grant to utilize the resource wastage, when traffic is light and the total sum of grants of an ONU is less than a minimum size. Using simulation, we validate ECOPS as superior to FCOPS in the mean delay and the service fairness.

  • Bandwidth Reallocation Strategy for Video Communications on NGN

    Bin SONG  Hao QIN  Chunfang GUO  Linhua MA  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E91-B No:9
      Page(s):
    3037-3040

    Based on an estimation model of video subjective quality, a bandwidth reallocation strategy for video communications on NGN is presented. Experimental results show that the average PSNR of recovery video quality can be greatly increased by using the proposed method when the network bandwidth decreases.

  • Spectral Efficiency of Fundamental Cooperative Relaying in Interference-Limited Environments

    Koji YAMAMOTO  Hirofumi MARUYAMA  Takashi SHIMIZU  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E91-B No:8
      Page(s):
    2674-2682

    The spectral efficiency of cooperative relaying in interference-limited environments in which a given channel is spatially reused is investigated. Cooperative relaying is a promising technique that uses neighboring stations to forward the data toward the destination in order to achieve spatial diversity gain. It has been reported that by introducing cooperative relaying into communication between an isolated source-destination pair, the error rate or spectral efficiency is generally improved. However, it is not intuitively clear whether cooperative relaying can improve the performance in interference-limited environments because the simultaneous transmission of multiple stations increases the number of interference signals. Assuming the most fundamental cooperative relaying arrangement, which consists of only one relay station, numerical results reveal that cooperative relaying is not always superior to non-cooperative single-hop and two-hop transmissions in terms of spectral efficiency.

141-160hit(386hit)