The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] IN(26286hit)

761-780hit(26286hit)

  • Analytical Minimization of L2-Sensitivity for All-Pass Fractional Delay Digital Filters with Normalized Lattice Structure

    Shunsuke KOSHITA  

     
    LETTER

      Pubricized:
    2022/08/24
      Vol:
    E106-A No:3
      Page(s):
    486-489

    This letter theoretically analyzes and minimizes the L2-sensitivity for all-pass fractional delay digital filters of which structure is given by the normalized lattice structure. The L2-sensitivity is well known as one of the useful evaluation functions for measuring the performance degradation caused by quantizing filter coefficients into finite number of bits. This letter deals with two cases: L2-sensitivity minimization problem with scaling constraint, and the one without scaling constraint. It is proved that, in both of these two cases, any all-pass fractional delay digital filter with the normalized lattice structure becomes an optimal structure that analytically minimizes the L2-sensitivity.

  • Real-Time Image-Based Vibration Extraction with Memory-Efficient Optical Flow and Block-Based Adaptive Filter

    Taito MANABE  Yuichiro SHIBATA  

     
    PAPER

      Pubricized:
    2022/09/05
      Vol:
    E106-A No:3
      Page(s):
    504-513

    In this paper, we propose a real-time vibration extraction system, which extracts vibration component within a given frequency range from videos in real time, for realizing tremor suppression used in microsurgery assistance systems. To overcome the problems in our previous system based on the mean Lucas-Kanade (LK) optical flow of the whole frame, we have introduced a new architecture combining dense optical flow calculated with simple feature matching and block-based band-pass filtering using band-limited multiple Fourier linear combiner (BMFLC). As a feature of optical flow calculation, we use the simplified rotation-invariant histogram of oriented gradients (RIHOG) based on a gradient angle quantized to 1, 2, or 3 bits, which greatly reduces the usage of memory resources for a frame buffer. An obtained optical flow map is then divided into multiple blocks, and BMFLC is applied to the mean optical flow of each block independently. By using the L1-norm of adaptive weight vectors in BMFLC as a criterion, blocks belonging to vibrating objects can be isolated from background at low cost, leading to better extraction accuracy compared to the previous system. The whole system for 480p and 720p resolutions can be implemented on a single Xilinx Zynq-7000 XC7Z020 FPGA without any external memory, and can process a video stream supplied directly from a camera at 60fps.

  • Dynamic Verification Framework of Approximate Computing Circuits using Quality-Aware Coverage-Based Grey-Box Fuzzing

    Yutaka MASUDA  Yusei HONDA  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2022/09/02
      Vol:
    E106-A No:3
      Page(s):
    514-522

    Approximate computing (AC) has recently emerged as a promising approach to the energy-efficient design of digital systems. For realizing the practical AC design, we need to verify whether the designed circuit can operate correctly under various operating conditions. Namely, the verification needs to efficiently find fatal logic errors or timing errors that violate the constraint of computational quality. This work focuses on the verification where the computational results can be observed, the computational quality can be calculated from computational results, and the constraint of computational quality is given and defined as the constraint which is set to the computational quality of designed AC circuit with given workloads. Then, this paper proposes a novel dynamic verification framework of the AC circuit. The key idea of the proposed framework is to incorporate a quality assessment capability into the Coverage-based Grey-box Fuzzing (CGF). CGF is one of the most promising techniques in the research field of software security testing. By repeating (1) mutation of test patterns, (2) execution of the program under test (PUT), and (3) aggregation of coverage information and feedback to the next test pattern generation, CGF can explore the verification space quickly and automatically. On the other hand, CGF originally cannot consider the computational quality by itself. For overcoming this quality unawareness in CGF, the proposed framework additionally embeds the Design Under Verification (DUV) component into the calculation part of computational quality. Thanks to the DUV integration, the proposed framework realizes the quality-aware feedback loop in CGF and thus quickly enhances the verification coverage for test patterns that violate the quality constraint. In this work, we quantitatively compared the verification coverage of the approximate arithmetic circuits between the proposed framework and the random test. In a case study of an approximate multiply-accumulate (MAC) unit, we experimentally confirmed that the proposed framework achieved 3.85 to 10.36 times higher coverage than the random test.

  • Vulnerability Estimation of DNN Model Parameters with Few Fault Injections

    Yangchao ZHANG  Hiroaki ITSUJI  Takumi UEZONO  Tadanobu TOBA  Masanori HASHIMOTO  

     
    PAPER

      Pubricized:
    2022/11/09
      Vol:
    E106-A No:3
      Page(s):
    523-531

    The reliability of deep neural networks (DNN) against hardware errors is essential as DNNs are increasingly employed in safety-critical applications such as automatic driving. Transient errors in memory, such as radiation-induced soft error, may propagate through the inference computation, resulting in unexpected output, which can adversely trigger catastrophic system failures. As a first step to tackle this problem, this paper proposes constructing a vulnerability model (VM) with a small number of fault injections to identify vulnerable model parameters in DNN. We reduce the number of bit locations for fault injection significantly and develop a flow to incrementally collect the training data, i.e., the fault injection results, for VM accuracy improvement. We enumerate key features (KF) that characterize the vulnerability of the parameters and use KF and the collected training data to construct VM. Experimental results show that VM can estimate vulnerabilities of all DNN model parameters only with 1/3490 computations compared with traditional fault injection-based vulnerability estimation.

  • An Accuracy Reconfigurable Vector Accelerator based on Approximate Logarithmic Multipliers for Energy-Efficient Computing

    Lingxiao HOU  Yutaka MASUDA  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2022/09/02
      Vol:
    E106-A No:3
      Page(s):
    532-541

    The approximate logarithmic multiplier proposed by Mitchell provides an efficient alternative for processing dense multiplication or multiply-accumulate operations in applications such as image processing and real-time robotics. It offers the advantages of small area, high energy efficiency and is suitable for applications that do not necessarily achieve high accuracy. However, its maximum error of 11.1% makes it challenging to deploy in applications requiring relatively high accuracy. This paper proposes a novel operand decomposition method (OD) that decomposes one multiplication into the sum of multiple approximate logarithmic multiplications to widely reduce Mitchell multiplier errors while taking full advantage of its area savings. Based on the proposed OD method, this paper also proposes an accuracy reconfigurable multiply-accumulate (MAC) unit that provides multiple reconfigurable accuracies with high parallelism. Compared to a MAC unit consisting of accurate multipliers, the area is significantly reduced to less than half, improving the hardware parallelism while satisfying the required accuracy for various scenarios. The experimental results show the excellent applicability of our proposed MAC unit in image smoothing and robot localization and mapping application. We have also designed a prototype processor that integrates the minimum functionality of this MAC unit as a vector accelerator and have implemented a software-level accuracy reconfiguration in the form of an instruction set extension. We experimentally confirmed the correct operation of the proposed vector accelerator, which provides the different degrees of accuracy and parallelism at the software level.

  • Libretto: An Open Cell Timing Characterizer for Open Source VLSI Design

    Shinichi NISHIZAWA  Toru NAKURA  

     
    PAPER

      Pubricized:
    2022/09/13
      Vol:
    E106-A No:3
      Page(s):
    551-559

    We propose an open source cell library characterizer. Recently, free and open-sourced silicon design communities are attracted by hobby designers, academies and industries. These open-sourced silicon designs are supported by free and open sourced EDAs, however, in our knowledge, tool-chain lacks cell library characterizer to use original standard cells into digital circuit design. This paper proposes an open source cell library characterizer which can generate timing models and power models of standard cell library.

  • On the Number of Affine Equivalence Classes of Vectorial Boolean Functions and q-Ary Functions

    Shihao LU  Haibin KAN  Jie PENG  Chenmiao SHI  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/08/24
      Vol:
    E106-A No:3
      Page(s):
    600-605

    Vectorial Boolean functions play an important role in cryptography, sequences and coding theory. Both affine equivalence and EA-equivalence are well known equivalence relations between vectorial Boolean functions. In this paper, we give an exact formula for the number of affine equivalence classes, and an asymptotic formula for the number of EA-equivalence classes of vectorial Boolean functions.

  • Lookahead Search-Based Low-Complexity Multi-Type Tree Pruning Method for Versatile Video Coding (VVC) Intra Coding

    Qi TENG  Guowei TENG  Xiang LI  Ran MA  Ping AN  Zhenglong YANG  

     
    PAPER-Coding Theory

      Pubricized:
    2022/08/24
      Vol:
    E106-A No:3
      Page(s):
    606-615

    The latest versatile video coding (VVC) introduces some novel techniques such as quadtree with nested multi-type tree (QTMT), multiple transform selection (MTS) and multiple reference line (MRL). These tools improve compression efficiency compared with the previous standard H.265/HEVC, but they suffer from very high computational complexity. One of the most time-consuming parts of VVC intra coding is the coding tree unit (CTU) structure decision. In this paper, we propose a low-complexity multi-type tree (MT) pruning method for VVC intra coding. This method consists of lookahead search and MT pruning. The lookahead search process is performed to derive the approximate rate-distortion (RD) cost of each MT node at depth 2 or 3. Subsequently, the improbable MT nodes are pruned by different strategies under different cost errors. These strategies are designed according to the priority of the node. Experimental results show that the overall proposed algorithm can achieve 47.15% time saving with only 0.93% Bjøntegaard delta bit rate (BDBR) increase over natural scene sequences, and 45.39% time saving with 1.55% BDBR increase over screen content sequences, compared with the VVC reference software VTM 10.0. Such results demonstrate that our method achieves a good trade-off between computational complexity and compression quality compared to recent methods.

  • Tourism Application Considering Waiting Time

    Daiki SAITO  Jeyeon KIM  Tetsuya MANABE  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2022/09/06
      Vol:
    E106-A No:3
      Page(s):
    633-643

    Currently, the proportion of independent travel is increasing in Japan. Therefore, earlier studies supporting itinerary planning have been presented. However, these studies have only insufficiently considered rural tourism. For example, tourist often use public transportation during trips in rural areas, although it is often difficult for a tourist to plan an itinerary for public transportation. Even if an itinerary can be planned, it will entail long waiting times at the station or bus stop. Nevertheless, earlier studies have only insufficiently considered these elements in itinerary planning. On the other hand, navigation is necessary in addition to itinerary creation. Particularly, recent navigation often considers dynamic information. During trips using public transportation, schedule changes are important dynamic information. For example, tourist arrive at bus stop earlier than planned. In such case, the waiting time will be longer than the waiting time included in the itinerary. In contrast, if a person is running behind schedule, a risk arises of missing bus. Nevertheless, earlier studies have only insufficiently considered these schedule changes. In this paper, we construct a tourism application that considers the waiting time to improve the tourism experience in rural areas. We define waiting time using static waiting time and dynamic waiting time. Static waiting time is waiting time that is included in the itinerary. Dynamic waiting time is the waiting time that is created by schedule changes during a trip. With this application, static waiting times is considered in the planning function. The dynamic waiting time is considered in the navigation function. To underscore the effectiveness of this application, experiments of the planning function and experiments of the navigation function is conducted in Tsuruoka City, Yamagata Prefecture. Based on the results, we confirmed that a tourist can readily plan a satisfactory itinerary using the planning function. Additionally, we confirmed that Navigation function can use waiting times effectively by suggesting additional tourist spots.

  • A Data-Driven Gain Tuning Method for Automatic Hovering Control of Multicopters via Just-in-Time Modeling

    Tatsuya KAI  Ryouhei KAKURAI  

     
    LETTER-Systems and Control

      Pubricized:
    2022/08/29
      Vol:
    E106-A No:3
      Page(s):
    644-646

    This study develops a new automatic hovering control method based on just-in-time modeling for a multicopter. Especially, the main aim is to compute gains of a feedback control law such that the multicopter hovers at a desired height and at a desired time without overshoot/undershoot. First, a database that contains various hovering data is constructed, and then the proposed method computes gains for a query input from the database. From simulation results, it turns out that the multicopter achieves control purposes, and hence the new method is effective.

  • iMon: Network Function Virtualisation Monitoring Based on a Unique Agent

    Cong ZHOU  Jing TAO  Baosheng WANG  Na ZHAO  

     
    PAPER-Network

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    230-240

    As a key technology of 5G, NFV has attracted much attention. In addition, monitoring plays an important role, and can be widely used for virtual network function placement and resource optimisation. The existing monitoring methods focus on the monitoring load without considering they own resources needed. This raises a unique challenge: jointly optimising the NFV monitoring systems and minimising their monitoring load at runtime. The objective is to enhance the gain in real-time monitoring metrics at minimum monitoring costs. In this context, we propose a novel NFV monitoring solution, namely, iMon (Monitoring by inferring), that jointly optimises the monitoring process and reduces resource consumption. We formalise the monitoring process into a multitarget regression problem and propose three regression models. These models are implemented by a deep neural network, and an experimental platform is built to prove their availability and effectiveness. Finally, experiments also show that monitoring resource requirements are reduced, and the monitoring load is just 0.6% of that of the monitoring tool cAdvisor on our dataset.

  • Scattering of a Coaxial Cable with a Grooved Flange Using the Associated Weber-Orr Transform

    Sang-kyu KIM  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/08/24
      Vol:
    E106-B No:3
      Page(s):
    260-266

    Electromagnetic scattering in a coaxial cable having two flanges and concentric grooves is studied. The associated Weber-Orr transform is used to represent electromagnetic fields in an infinitely long cavity, and the mode-matching method is used to enforce boundary continuity. S-parameters obtained by our approach are compared with the reference solutions, and the characteristics are discussed when geometric parameters are varied. The results show that the proposed model provides cost effective and accurate solutions to the problem.

  • On the Degrees of Freedom of a Propagation-Delay Based Multicast X Channel with Two Transmitters and Arbitrary Receivers

    Conggai LI  Qian GAN  Feng LIU  Yanli XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/23
      Vol:
    E106-B No:3
      Page(s):
    267-274

    Compared with the unicast scenario, X channels with multicast messaging can support richer transmission scenarios. The transmission efficiency of the wireless multicast X channel is an important and open problem. This article studies the degrees of freedom of a propagation-delay based multicast X channel with two transmitters and arbitrary receivers, where each transmitter sends K different messages and each receiver desires K - 1 of them from each transmitter. The cyclic polynomial approach is adopted for modeling and analysis. The DoF upper bound is analyzed and shown to be unreachable. Then a suboptimal scheme with one extra time-slot cycle is proposed, which uses the cyclic interference alignment method and achieves a DoF of K - 1. Finally, the feasibility conditions in the Euclidean space are derived and the potential applications are demonstrated for underwater acoustic and terrestrial radio communications.

  • A Resource-Efficient Green Paradigm For Crowdsensing Based Spectrum Detection In Internet of Things Networks

    Xiaohui LI  Qi ZHU  Wenchao XIA  Yunpei CHEN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2022/09/12
      Vol:
    E106-B No:3
      Page(s):
    275-286

    Crowdsensing-based spectrum detection (CSD) is promising to enable full-coverage radio resource availability for the increasingly connected machines in the Internet of Things (IoT) networks. The current CSD scheme consumes a lot of energy and network resources for local sensing, processing, and distributed data reporting for each crowdsensing device. Furthermore, when the amount of reported data is large, the data fusion implemented at the requestor can easily cause high latency. For improving efficiencies in both energy and network resources, this paper proposes a green CSD (GCSD) paradigm. The ambient backscatter (AmB) is used to enable a battery-free mode of operation in which the received spectrum data is reported directly through backscattering without local processing. The energy for backscattering can be provided by ambient radio frequency (RF) sources. Then, relying on air computation (AirComp), the data fusion can be implemented during the backscattering process and over the air by utilizing the summation property of wireless channel. This paper illustrates the model and the implementation process of the GCSD paradigm. Closed-form expressions of detection metrics are derived for the proposed GCSD. Simulation results verify the correctness of the theoretical derivation and demonstrate the green properties of the GCSD paradigm.

  • Establishment of Transmission Lines Model of Shielded Twisted-Pair Line

    Xiang ZHOU  Xiaoyu LU  Weike WANG  Jinjing REN  Yixing GU  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    67-75

    Crosstalk between lines plays an important role in the transmission of signal. Hence it is of great significance to establish the transmission lines model accurately to evaluate factors affecting crosstalk coupling between lines and to improve the anti-interference capability of the system. As twisted-pair line is widely used for its unique twist structure which improves the anti-interference performance of cables, this paper presents a method of constructing transmission lines model of the shielded twisted-pair line (STP) with two twisted pairs based on S-parameters. Firstly, the transmission lines model of STP with one twisted pair is established. The establishment of distributed capacitance matrix of this model depends on the dielectric constant of insulation layer that surrounds a conductor, but the dielectric constant is often unknown. In this respect, a method to obtain the distributed capacitance matrix based on the S-parameters of this model is proposed. Due to twisting, there is a great deal of variability between the distribution parameters along the length of the STP. As the spatial distribution of conductors in the cross-section of twisted-pair line vary along with the cable length, the distribution parameters matrices also change as they move. The cable is divided into several segments, and the transmission lines model of STP is obtained with the cascade of each segment model. For the STP with two twisted pairs, the crosstalk between pairs is analyzed based on the mixed mode S-parameters. Combined with the transmission lines model of STP with one twisted pair, that of STP with two twisted pairs is obtained. The terminal response voltage can be calculated from the transmission lines model and cable terminal conditions. The validity of the transmission lines model is verified by the consistency between the terminal responses calculated by the model and by the simulated. As the theoretical and simulation results are compatible, the modeling method for the STP with two twisted pairs can be used for the STP with more twisted pairs. In practical engineering application, S-parameters and mixed mode S-parameters can be obtained by testing. That means the transmission lines model of STP can be established based on the test results.

  • Fully Digital Calibration Technique for Channel Mismatch of TIADC at Any Frequency

    Hongmei CHEN  Jian WANG  Lanyu WANG  Long LI  Honghui DENG  Xu MENG  Yongsheng YIN  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    84-92

    This paper presents a fully digital modulation calibration technique for channel mismatch of TIADC at any frequency. By pre-inputting a test signal in TIADC, the mismatch errors are estimated and stored, and the stored values will be extracted for compensation when the input signal is at special frequency which can be detected by a threshold judgement module, thus solving the problem that the traditional modulation calibration algorithm cannot calibrate the signal at special frequency. Then, by adjusting the operation order among the error estimation coefficient, modulation function and input signal in the calibration loop, further, the order of correlation and modulation in the error estimation module, the complexity of the proposed calibration algorithm is greatly reduced and it will not increase with the number of channels of TIADC. What's more, the hardware consumption of filters in calibration algorithm is greatly reduced by introducing a CSD (Canonical Signed Digit) coding technique based on Horner's rule and sub-expression sharing. Applied to a four-channel 14bit 560MHz TIADC system, with input signal at 75.6MHz, the FPGA verification results show that, after calibration, the spurious-free dynamic range (SFDR) improves from 33.47dB to 99.81dB and signal-to-noise distortion ratio (SNDR) increases from 30.15dB to 81.89dB.

  • Study on Wear Debris Distribution and Performance Degradation in Low Frequency Fretting Wear of Electrical Connector

    Yanyan LUO  Jingzhao AN  Jingyuan SU  Zhaopan ZHANG  Yaxin DUAN  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    93-102

    Aiming at the problem of the deterioration of the contact performance caused by the wear debris generated during the fretting wear of the electrical connector, low-frequency fretting wear experiments were carried out on the contacts of electrical connectors, the accumulation and distribution of the wear debris were detected by the electrical capacitance tomography technology; the influence of fretting cycles, vibration direction, vibration frequency and vibration amplitude on the accumulation and distribution of wear debris were analyzed; the correlation between characteristic value of wear debris and contact resistance value was studied, and a performance degradation model based on the accumulation and distribution of wear debris was built. The results show that fretting wear and performance degradation are the most serious in axial vibration; the characteristic value of wear debris and contact resistance are positively correlated with the fretting cycles, vibration frequency and vibration amplitude; there is a strong correlation between the sum of characteristic value of wear debris and the contact resistance value; the prediction error of ABC-SVR model of fretting wear performance degradation of electrical connectors constructed by the characteristic value of wear debris is less than 6%. Therefore, the characteristic value of wear debris in contact subareas can quantitatively describe the degree of fretting wear and the process of performance degradation.

  • Bending Loss Analysis of Chalcogenide Glass Channel Waveguides for Mid-Infrared Astrophotonic Devices Open Access

    Takashi YASUI  Jun-ichiro SUGISAKA  Koichi HIRAYAMA  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2022/08/25
      Vol:
    E106-C No:3
      Page(s):
    107-110

    In this study, the bending losses of chalcogenide glass channel optical waveguides consisting of an As2Se3 core and an As2S3 lower cladding layer were numerically evaluated across the astronomical N-band, which is the mid-infrared spectral range between the 8 µm and 12 µm wavelengths. The results reveal the design rules for bent waveguides in mid-infrared astrophotonic devices.

  • DAG-Pathwidth: Graph Algorithmic Analyses of DAG-Type Blockchain Networks

    Shoji KASAHARA  Jun KAWAHARA  Shin-ichi MINATO  Jumpei MORI  

     
    PAPER

      Pubricized:
    2022/12/22
      Vol:
    E106-D No:3
      Page(s):
    272-283

    This paper analyzes a blockchain network forming a directed acyclic graph (DAG), called a DAG-type blockchain, from the viewpoint of graph algorithm theory. To use a DAG-type blockchain, NP-hard graph optimization problems on the DAG are required to be solved. Although various problems for undirected and directed graphs can be efficiently solved by using the notions of graph parameters, these currently known parameters are meaningless for DAGs, which implies that it is hopeless to design efficient algorithms based on the parameters for such problems. In this work, we propose a novel graph parameter for directed graphs called a DAG-pathwidth, which represents the closeness to a directed path. This is an extension of the pathwidth, a well-known graph parameter for undirected graphs. We analyze the features of the DAG-pathwidth and prove that computing the DAG-pathwidth of a DAG (directed graph in general) is NP-complete. Finally, we propose an efficient algorithm for a variant of the maximum k-independent set problem for the DAG-type blockchain when the DAG-pathwidth of the input graph is small.

  • Pumping Lemmas for Languages Expressed by Computational Models with Registers

    Rindo NAKANISHI  Yoshiaki TAKATA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2022/10/14
      Vol:
    E106-D No:3
      Page(s):
    284-293

    Register automaton (RA), register context-free grammar (RCFG) and register tree automaton (RTA) are computational models with registers which deal with data values. This paper shows pumping lemmas for the classes of languages expressed by RA, RCFG and RTA. Among them, the first lemma was already proved in terms of nominal automata, which is an abstraction of RA. We define RTA in a deterministic and bottom-up manner. For these languages, the notion of ‘pumped word’ must be relaxed in such a way that a pumped subword is not always the same as the original subword, but is any word equivalent to the original subword in terms of data type defined in this paper. By using the lemmas, we give examples of languages that do not belong to the above-mentioned classes of languages.

761-780hit(26286hit)