The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] NCO(318hit)

281-300hit(318hit)

  • Incompletely Specified Regular Ternary Logic Functions and Their Minimization

    Tomoyuki ARAKI  Masao MUKAIDONO  

     
    PAPER-Logic and Logic Functions

      Vol:
    E82-D No:5
      Page(s):
    910-918

    Regular ternary logic functions are one of the most useful special classes of Kleenean functions, and a lot of research has been done on them. However, there has been little work done on incompletely specified regular ternary logic functions. This paper describes the following points: (1) Minimization of incompletely specified regular ternary logic functions. (2) A new definition of incompletely specified fuzzy switching functions and their minimization. (Concretely speaking, minimal disjunctive forms of incompletely specified fuzzy switching functions are represented in formulas of regular ternary logic functions. ) (3) Their application to fuzzy logic circuits such as fuzzy PLAs of AND-OR type.

  • Coded Modulation for Satellite Broadcasting Based on Unconventional Partitionings

    Motohiko ISAKA  Robert H. MORELOS-ZARAGOZA  Marc P. C. FOSSORIER  Shu LIN  Hideki IMAI  

     
    PAPER-Coded Modulation

      Vol:
    E81-A No:10
      Page(s):
    2055-2063

    Unequal error protection (UEP) is a very promising coding technique for satellite broadcasting, as it gradually reduces the transmission rate. From the viewpoint of bandwidth efficiency, UEP should be achieved in the context of multilevel coded modulation. However, the conventional mapping between encoded bits and modulation signals, usually realized for multilevel block modulation codes and multistage decoding, is not very compatible with UEP coding because of the large number of resulting nearest neighbor codewords. In this paper, new coded modulation schemes for UEP based on unconventional partitioning are proposed. A linear operation referred to as interlevel combination is introduced. This operation generalizes previous partitioning proposed for UEP applications and provides additional flexibility with respect to UEP capabilities. The error performance of the proposed codes are evaluated both by computer simulations and a theoretical analysis. The obtained results show that the proposed codes achieve good tradeoff between the proportion and the error performance of each error protection level.

  • Heuristic State Reduction Methods of Incompletely Specified Machines Preceding to Satisfy Covering Condition

    Masaki HASHIZUME  Takeomi TAMESADA  Takashi SHIMAMOTO  Akio SAKAMOTO  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E81-A No:6
      Page(s):
    1045-1054

    This paper presents two kinds of simplification methods for incompletely specified sequential machines. The strategy of the methods is that as many states in original machines are covered in the simplification processes as possible. The purpose of the methods is to derive a simplified machine having either the largest maximal compatible set or its subset. With the methods, one of the minimal machines can not be always derived, but a near-minimal machine can be obtained more quickly with less memory, since they need not derive all the compatible sets. In this paper, the effectiveness of the methods is checked by applying them to simplification problems of incompletely specified machines generated by using random numbers, and of the MCNC benchmark machines. The experimental results show that our methods can derive a simplified machine quickly, especially for machines having a great number of states or don't care rate.

  • Performance Analysis of Generalized Order Statistic Cell Averaging CFAR Detector with Noncoherent Integration

    Kyung-Tae JUNG  Hyung-Myung KIM  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:6
      Page(s):
    1201-1209

    We propose a Generalized Order Statistic Cell Averaging (GOSCA) CFAR detector. The weighted sums of the order statistics in the leading and lagging reference windows are utilized for the background level estimate. The estimate is obtained by averaging the weighted sums. By changing the weighting values, various CFAR detectors are obtained. The main advantage of the proposed GOSCA CFAR detector over the GOS CFAR detector is to reduce a computational time which is critical factor for the real time operation. We also derive unified formulas of the GOSCA CFAR detector under the noncoherent integration scheme. For Swerling target cases, performances of various CFAR detectors implemented using the GOSCA CFAR detector are derived and compared in homogeneous environment, and in the case of multiple targets and clutter edges situations.

  • A Chip Set for Programmable Real-Time MPEG2 MP@ML Video Encoder

    Tetsuya MATSUMURA  Hiroshi SEGAWA  Satoshi KUMAKI  Yoshinori MATSUURA  Atsuo HANAMI  Kazuya ISHIHARA  Shin-ichi NAKAGAWA  Tadashi KASEZAWA  Yoshihide AJIOKA  Atsushi MAEDA  Masahiko YOSHIMOTO  Tadashi SUMI  

     
    PAPER

      Vol:
    E81-C No:5
      Page(s):
    680-694

    This paper describes a chip set architecture and its implementation for programmable MPEG2 MP@ML (main profile at main level) video encoder. The chip set features a functional partitioning architecture based on the MPEG2 layer structure. Using this partitioning scheme, an optimized system configuration with double bus structure is proposed. In addition, a hybrid architecture with dual video-oriented on-chip RISC processors and dedicated hardware and a hierarchical pipeline scheme covering all layers are newly introduced to realize flexibility. Also, effective motion estimation is achieved by a scalable solution for high picture quality. Adopting these features, three kinds of VLSI have been developed using 0. 5 micron double metal CMOS technology. The chip set consists of a controller-LSI (C-LSI), a macroblock level pixel processor-LSI (P-LSI) and a motion estimation-LSI (ME-LSI). The chip set combined with synchronous DRAMs (SDRAM) supports all the layer processing including rate-control and realizes real-time encoding for ITU-R-601 resolution video (720480 pixels at 30 frames/s) with glue less logic. The exhaustive motion estimation capability is scalable up to 63. 5 and 15. 5 in the horizontal and vertical directions respectively. This chip set solution realizes a low cost MPEG2 video encoder system with excellent video quality on a single PC extension board. The evaluation system and application development environment is also introduced.

  • A Simple Parallel Algorithm for the Ziv-Lempel Encoding

    Ken-ichi IWATA  Masakatu MORII  Tomohiko UYEMATSU  Eiji OKAMOTO  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E81-A No:4
      Page(s):
    709-712

    Many Ziv-Lempel algorithms have a similar property, that is, slow encoding and fast decoding. This paper proposes a simple improved Ziv-Lempel algorithm to encode a large amount of data quickly as well as compactly by using multiple-processor system.

  • Noncollinear Phase- and Group-Velocity Matching of Optical Parametric Amplifier for Ultrashort Pulse Generation

    Akira SHIRAKAWA  Takayoshi KOBAYASHI  

     
    PAPER-Femtosecond Pulse Compression, Amplification and Manipulation

      Vol:
    E81-C No:2
      Page(s):
    246-253

    An ultra-broadband optical parametric amplification can be attained by a noncollinear phase-matching. The group-velocity matching of the signal and idler reduces the signal-pulse width to 14-fs in an optical parametric amplifier based on a β-BaB2O4 crystal pumped by a second harmonics of a Ti: sapphire regenerative amplifier. This simple novel method shows the potential light source of a tunable sub-10-fs pulse in a visible region.

  • Reliability Analysis of Disk Array Organizations by Considering Uncorrectable Bit Errors

    Xuefeng WU  Jie LI  Hisao KAMEDA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E81-D No:1
      Page(s):
    73-80

    In this paper, we present an analytic model to study the reliability of some important disk array organizations that have been proposed by others in the literature. These organizations are based on the combination of two options for the data layout, regular RAID-5 and block designs, and three alternatives for sparing, hot sparing, distributed sparing and parity sparing. Uncorrectable bit errors have big effects on reliability but are ignored in traditional reliability analysis of disk arrays. We consider both disk failures and uncorrectable bit errors in the model. The reliability of disk arrays is measured in terms of MTTDL (Mean Time To Data Loss). A unified formula of MTTDL has been derived for these disk array organizations. The MTTDLs of these disk array organizations are also compared using the analytic model. By numerical experiments, we show that the data losses caused by uncorrectable bit errors may dominate the data losses of disk array systems though only the data losses caused by disk failures are traditionally considered. The consideration of uncorrectable bit errors provides a more realistic look at the reliability of the disk array systems.

  • Irreducible Components of Canonical Graphs for Second Order Spectral Nulls

    Hiroshi KAMABE  

     
    PAPER-Coding Theory

      Vol:
    E80-A No:11
      Page(s):
    2073-2088

    Irreducible components of canonical graphs for second order spectral null constraints at a rational submultiple of the symbol frequency fsk/n are studied where fs is the symbol frequency. We show that if n is prime then a canonical graph consists of disjoint irreducible components. We also show that the number of irreducible components of a canonical graphs is finite if n is prime. For the case n = 2 and p O mod n, all aperiodic irreducible components are identified explicitly where p is a parameter of a canonical graph.

  • Solution of the Eigenmode Problem for an Open Generalized Transmission Line by Domain Product Technique

    Vitaliy CHUMACHENKO  Olexandr KRAPYVNY  Vladimir ZASOVENKO  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1476-1481

    In this paper an algorithm for numerical investigation of the transmission line having a generalized polygonal cross-section and open interface is proposed. Solution of the eigenmode problem is based on the method called the domain product technique, which employs a Mathieu function expansion and provides an efficient technique to the analysis of the structures with multiangular boundaries. An agreement at the obtained numerical results with existing data confirms the applicability of the theoretical analysis given in the paper.

  • Reliability Modeling of Declustered-Parity RAID Considering Uncorrectable Bit Errors

    Xuefeng WU  Jie LI  Hisao KAMEDA  

     
    PAPER-Reliability and Fault Analysis

      Vol:
    E80-A No:8
      Page(s):
    1508-1515

    UNcorrectable Bit Errors (UNBEs) are important in considering the reliability of Redundant Array of Inexpensive Disks (RAID). They, however, have been ignored or have not been studied in detail in existing reliability analysis of RAID. In this paper, we present an analytic model to study the reliability of declustered-parity RAID by considering UNBEs. By using the analytic model, the optimistic and the pessimistic estimates of the probability that data loss occurs due to an UNBE during the data reconstruction after a disk failed (we call this DB data loss) are obtained. Then, the optimistic and the pessimistic estimates of the Mean Time To Data Loss (MTTDL) that take into account both DB data loss and the data loss caused by double independent disk failures (we call this DD data loss) are obtained. Furthermore, how the MTTDL depends on the number of units in a parity stripe, rebuild time of a failed disk and write fraction of data access are studied by numerical analysis.

  • A Novel FEC Scheme for Differentially Detected QPSK Signals in Mobile Computing Using High-Speed Wireless Access

    Takatoshi SUGIYAMA  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E80-B No:8
      Page(s):
    1153-1159

    This paper proposes a novel FEC (forward error correction) scheme for high-speed wireless systems aiming at mobile computing applications. The proposed scheme combines inner nonredundant error correction with outer parallel encoding random FEC for differentially detected QPSK (quadrature phase shift keying) signals. This paper, first, examines error patterns after the differential detection with nonredundant error correction and reveals that particular double symbol errors occur with relatively high probability. To improve the outer FEC performance degradation due to the double symbol errors, the proposed scheme uses I and Q channel serial to parallel conversion in the transmission side and parallel to serial conversion in the receiving side. As a result, it enables to use simple FEC for the outer parallel encoding random FEC without interleaving. Computer simulation results show the proposed scheme employing one bit correction BCH coding obtains a required Eb/No improvement of 1.2 dB at a Pe of 10-5 compared to that with the same memory size interleaving in an AWGN environment. Moreover, in a Rician fading environment where directional beam antennas are assumed to be used to improve the degradation due to severe multipath signals, an overall Eb/No improvement at Pe of 10-5 of 3.0 dB is achieved compared to simple differential detection when the condition of delay spread of 5 nsec, carrier to multipath signal power ratio of 20 dB and Doppler frequency at 20 GHz band of 150 Hz.

  • An Image Scanning Method with Selective Activation of Tree Structure

    Junichi AKITA  Kunihiro ASADA  

     
    PAPER-Multi Processors

      Vol:
    E80-C No:7
      Page(s):
    956-961

    We propose a new scanning method for image signals using a tree structure of automata. The tree is scanned selectively along the signal path for realizing both lower power consumption and a kind of image compression by skipping nonactive elements. We designed the node automata along with photo-detectors of 3232 in a 7.2 mm7.2 mm chip using a 1.5µm CMOS technology. We demonstrate applications of the tree structure using its feature of selective activation; a moving picture compression using inter-frame difference, an adaptive resolution scan like human eyesight and a motion compensation as examples.

  • Factorization of String Polynomials

    Kazuyoshi MORI  Saburou IIDA  

     
    PAPER

      Vol:
    E80-A No:4
      Page(s):
    670-681

    A factorization method for a string polynomial called the constant method is proposed. This uses essentially three operations; classification of monomials, gcrd (greatest common right divisor), and lcrm (least common rigth multiple). This method can be applied to string polynomials except that their constants cannot be reduced to zeros by the linear transformation of variables. To factorize such excluded string polynomials, the naive method is also presented, which computes simply coefficients of two factors of a given polynomial, but is not efficient.

  • Parallel Encoder and Decoder Architecture for Cyclic Codes

    Tomoko K. MATSUSHIMA  Toshiyasu MATSUSHIMA  Shigeichi HIRASAWA  

     
    PAPER-Coding Theory

      Vol:
    E79-A No:9
      Page(s):
    1313-1323

    Recently, the high-speed data transmission techniques that have been developed for communication systems have in turn necessitated the implementation of high-speed error correction circuits. Parallel processing has been found to be an effective method of speeding up operarions, since the maximum achievable clock frequency is generally bounded by the physical constraints of the circuit. This paper presents a parallel encoder and decoder architecture which can be applied to both binary and nonbinary cyclic codes. The architecture allows H symbols to be processed in parallel, where H is an arbitrary integer, although its hardware complexity is not proportional to the number of parallel symbols H. As an example, we investigate hardware complexity for a Reed-Solomon code and a binary BCH code. It is shown that both the hardware complexity and the delay for a parallel circuit is much less than that with the parallel operation of H conventional circuits. Although the only problem with this parallel architecture is that the encoder's critical path length increases with H, the proposed architecture is more efficient than a setup using H conventional circuits for high data rate applications. It is also suggested that a parallel Reed-Solomon encoder and decoder, which can keep up with optical transmission rates, i.e., several giga bits/sec, could be implemented on one LSI chip using current CMOS technology.

  • High-Throughput Technologies for Video Signal Processor (VSP) LSIs

    Tadayoshi ENOMOTO  

     
    INVITED PAPER

      Vol:
    E79-C No:4
      Page(s):
    459-471

    Discussed here is progress achieved in the development of video codec LSIs.First, the amount of computation for various standards, and signal handling capability (throughput) and power dissipation for video codec LSIs are described. Then, general technologies for improving throughtput are briefly summarized. The paper also reviews three approaches (i.e., video signal processor, building block and monolithic codes) for implementing video codes standards. The second half of the paper discusses various high-throughput technologies developed for programmable Video Signal Processor (VSP) LSIs. A number of VSP LSIs are introduced, including the world's first programmable VSP, developed in February 1987 and a monolithic codec ship, built in February 1993 that is sufficient in itself for the construction of a video encoder for encoding full-CIF data at 30 frames per second. Technologies for reduction of power dissipation while keeping maintaining throughput are also discussed.

  • Shortened Prime Codes and Their Cost-Effective Encoders for Use in All-Optical CDMA Networks

    Jian-Guo ZHANG  

     
    LETTER-Optical Communication

      Vol:
    E79-B No:2
      Page(s):
    198-201

    Shortened prime codes (SPR-codes) are presented, which can maintain the fixed code weight for any arbitrary number of codewords while still preserve the same cross and auto-correlation constraints as original prime codes. The use of SPR-codes can reduce both cost and power loss of optical encoders/decoders. Tunable all-optical SPR-code encoders are also designed, which are based on rapidly tunable optical delay lines. It is shown that using this type of encoders not only can further reduce the coding power loss, but also can achieve a very cost-effective fashion.

  • ULSI Realization of MPEG2 Realtime Video Encoder and Decoder--An Overview

    Masahiko YOSHIMOTO  Shin-ichi NAKAGAWA  Tetsuya MATSUMURA  Kazuya ISHIHARA  Shin-ichi URAMOTO  

     
    INVITED PAPER

      Vol:
    E78-C No:12
      Page(s):
    1668-1681

    This paper will describe an overview on several design issues and solutions for the realization of MPEG2 encoder &decoder LSIs. ULSI technology and video-coding specific design have been able to actualize an MPEG2 encoder &decoder LSI with realtime capability, flexibility and cost effectiveness, though MPEG2 processing at MP@ML (Main Profile and Main Level) requires an enormous computation power of 10-200 GOPS depending on the motion estimation algorithm and a search range. Video coding processors, whose performance has been enhanced at the rate of one order per 3 years, have reached the performance level required to implement MPEG2 encoding using multiple chip configuration. This has been achieved by a hybrid architecture with video-oriented RISC and hardware engine optimized for coding algorithms. Intensive circuit optimization was carried out for transform coding such as DCT and predictive coding with motion estimation. Now cost effective MPEG2 decoders have begun to penetrate the multimedia market. There are two main design issues. One is the architectural and circuit design which minimizes the silicon area and power dissipation. The other is external DRAM control which makes use of DRAM storage and band width efficiently to reduce the system cost. Also future trends in a deep submicron era will be discussed. A single chip MPEG2 MP@ML encoder is expected to appear in the 0.25 micron era at the latest. An MPEG2 MP@ML decoder could be compressed to an area of about 25 mm2.

  • A Bidirectional Motion Compensation LSI with a Compact Motion Estimator

    Naoya HAYASHI  Toshiaki KITSUKI  Ichiro TAMITANI  Hideki HONMA  Yasushi OOI  Takashi MIYAZAKI  Katsunari OOBUCHI  

     
    PAPER

      Vol:
    E78-C No:12
      Page(s):
    1682-1690

    A motion compensation LSI for realtime MPEG1/H.261 video encoding has been developed. This LSI employs a compact motion estimator that consists of vector search array processors. Furthermore, an efficient motion vector search strategy that enables bidirectioanl searches with a -16.0/+15.5 pels range is adopted to maintain encoded picture quality. The adopted strategy takes two steps. The first step is the full search for 2-pel precision vectors within the range of 16 pels. A 4-to-1 sub-sampling technique with a low pass filter is employed in this step. The second step is the full search for half-pel precision vectors within a 1.0 pels search range centered on the location pointed by the best 2-pel precision vectors. This strategy is compared with the exhaustive-search strategy. It is shown that the number of operations and external memory access cycles are reduced to 1/11 and 1/2, respectively, while differences of the signal to noise ratios obtained by simulation are within 0.2 dB. Those reductions contribute to lowering power dissipation. The array processors calculate the values of distortion. They accumulate the absolute differences between current and reference data with a feedback loop to keep the number of processor elements equal to the number of pels in a row of the current block. Multiple reference data buses and a delay line in the feedback loop have been introduced for efficient calculation. In addition, cascade connection of the array processors is studied to shorten calculation periods. This LSI controls input frames reordering buffers and reference frames buffers. It generates the prediction and the prediction error blocks as well as the motion vectors. AC power of current blocks and the values of distortion are obtained for the bit rate control. This LSI is fabricated using 0.8 µm 2-level metal CMOS technology and dissipates 2.0 W from 5 V supply at 36 MHz.

  • Partial Product Generator with Embedded Booth-Encoding

    Alberto Palacios PAWLOVSKY  Makoto HANAWA  Kenji KANEKO  

     
    LETTER-Integrated Electronics

      Vol:
    E78-C No:12
      Page(s):
    1793-1795

    In arithmetic units multiplication is a very important operation. It is a common approach to use the modified Booth's algorithm to reduce the number of partial products in a multiplication and speed it up. In this letter we show two circuits that fuse the usually separate functions of generating the partial products and selecting them. The circuits designed in DPL (Double Pass-transistor Logic) are bigger in MOS transistors, but are faster and, function at higher frequencies than a typical CMOS implementation. One of our circuits also has lower power consumption.

281-300hit(318hit)