The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OEF(171hit)

1-20hit(171hit)

  • Synchronization of Canards in Coupled Canard-Generating Bonhoeffer-Van Der Pol Oscillators Subject to Weak Periodic Perturbations Open Access

    Kundan Lal DAS  Munehisa SEKIKAWA  Tadashi TSUBONE  Naohiko INABA  Hideaki OKAZAKI  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2023/11/13
      Vol:
    E107-A No:8
      Page(s):
    1098-1105

    This paper discusses the synchronization of two identical canard-generating oscillators. First, we investigate a canard explosion generated in a system containing a Bonhoeffer-van der Pol (BVP) oscillator using the actual parameter values obtained experimentally. We find that it is possible to numerically observe a canard explosion using this dynamic oscillator. Second, we analyze the complete and in-phase synchronizations of identical canard-generating coupled oscillators via experimental and numerical methods. However, we experimentally determine that a small decrease in the coupling strength of the system induces the collapse of the complete synchronization and the occurrence of a complex synchronization; this finding could not be explained considering four-dimensional autonomous coupled BVP oscillators in our numerical work. To numerically investigate the experimental results, we construct a model containing coupled BVP oscillators that are subjected to two weak periodic perturbations having the same frequency. Further, we find that this model can efficiently numerically reproduce experimentally observed synchronization.

  • Influence of the Gate Voltage or the Base Pair Ratio Modulation on the λ-DNA FET Performance

    Naoto MATSUO  Akira HEYA  Kazushige YAMANA  Koji SUMITOMO  Tetsuo TABEI  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Pubricized:
    2023/08/08
      Vol:
    E107-C No:3
      Page(s):
    76-79

    The influence of the gate voltage or base pair ratio modulation on the λ-DNA FET performance was examined. The result of the gate voltage modulation indicated that the captured electrons in the guanine base of the λ-DNA molecules greatly influenced the Id-Vd characteristics, and that of the base pair ratio modulation indicated that the tendency of the conductivity was partly clarified by considering the activation energy of holes and electrons and the length and numbers of the serial AT or GC sequences over which the holes or electrons jumped. In addition, the influence of the dimensionality of the DNA molecule on the conductivity was discussed theoretically.

  • CCTSS: The Combination of CNN and Transformer with Shared Sublayer for Detection and Classification

    Aorui GOU  Jingjing LIU  Xiaoxiang CHEN  Xiaoyang ZENG  Yibo FAN  

     
    PAPER-Image

      Pubricized:
    2023/07/06
      Vol:
    E107-A No:1
      Page(s):
    141-156

    Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable performance in detection and classification tasks. Nevertheless, their feature extraction cannot consider both local and global information, so the detection and classification performance can be further improved. In addition, more and more deep learning networks are designed as more and more complex, and the amount of computation and storage space required is also significantly increased. This paper proposes a combination of CNN and transformer, and designs a local feature enhancement module and global context modeling module to enhance the cascade network. While the local feature enhancement module increases the range of feature extraction, the global context modeling is used to capture the feature maps' global information. To decrease the model complexity, a shared sublayer is designed to realize the sharing of weight parameters between the adjacent convolutional layers or cross convolutional layers, thereby reducing the number of convolutional weight parameters. Moreover, to effectively improve the detection performance of neural networks without increasing network parameters, the optimal transport assignment approach is proposed to resolve the problem of label assignment. The classification loss and regression loss are the summations of the cost between the demander and supplier. The experiment results demonstrate that the proposed Combination of CNN and Transformer with Shared Sublayer (CCTSS) performs better than the state-of-the-art methods in various datasets and applications.

  • A Note on the Confusion Coefficient of Boolean Functions

    Yu ZHOU  Jianyong HU  Xudong MIAO  Xiaoni DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/05/24
      Vol:
    E106-A No:12
      Page(s):
    1525-1530

    Low confusion coefficient values can make side-channel attacks harder for vector Boolean functions in Block cipher. In this paper, we give new results of confusion coefficient for f ⊞ g, f ⊡ g, f ⊕ g and fg for different Boolean functions f and g, respectively. And we deduce a relationship on the sum-of-squares of the confusion coefficient between one n-variable function and two (n - 1)-variable decomposition functions. Finally, we find that the confusion coefficient of vector Boolean functions is affine invariant.

  • Two Cascade Control Strategy of Generalized Electric Spring

    Xiaohu WANG  Yubin DUAN  Yi WEI  Xinyuan CHEN  Huang ZHUN  Chaohui ZHAO  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2023/06/05
      Vol:
    E106-B No:11
      Page(s):
    1102-1108

    With the gradually increase of the application of new energy in microgrids, Electric Spring (ES), as a new type of distributed compensation power electronic device has been widely studied. The Generalized Electric Spring (G-ES) is an improved topology, and the space limitation problem in the traditional topology is solved. Because of the mode of G-ES use in the power grid, a reasonable solution to the voltage loss of the critical section feeder is needed. In this paper, the voltage balance equation based on the feedforward compensation coefficient is established, and a two cascade control strategy based on the equation is studied. The first stage of the two cascade control strategy is to use communication means to realize the allocation of feedforward compensation coefficients, and the second stage is to use the coefficients to realize feedforward fixed angle control. Simulation analysis shows that the proposed control strategy does not affect the control accuracy of the critical load (CL), and effectively improves the operational range of the G-ES.

  • Privacy-Preserving Correlation Coefficient

    Tomoaki MIMOTO  Hiroyuki YOKOYAMA  Toru NAKAMURA  Takamasa ISOHARA  Masayuki HASHIMOTO  Ryosuke KOJIMA  Aki HASEGAWA  Yasushi OKUNO  

     
    PAPER

      Pubricized:
    2023/02/08
      Vol:
    E106-D No:5
      Page(s):
    868-876

    Differential privacy is a confidentiality metric and quantitatively guarantees the confidentiality of individuals. A noise criterion, called sensitivity, must be calculated when constructing a probabilistic disturbance mechanism that satisfies differential privacy. Depending on the statistical process, the sensitivity may be very large or even impossible to compute. As a result, the usefulness of the constructed mechanism may be significantly low; it might even be impossible to directly construct it. In this paper, we first discuss situations in which sensitivity is difficult to calculate, and then propose a differential privacy with additional dummy data as a countermeasure. When the sensitivity in the conventional differential privacy is calculable, a mechanism that satisfies the proposed metric satisfies the conventional differential privacy at the same time, and it is possible to evaluate the relationship between the respective privacy parameters. Next, we derive sensitivity by focusing on correlation coefficients as a case study of a statistical process for which sensitivity is difficult to calculate, and propose a probabilistic disturbing mechanism that satisfies the proposed metric. Finally, we experimentally evaluate the effect of noise on the sensitivity of the proposed and direct methods. Experiments show that privacy-preserving correlation coefficients can be derived with less noise compared to using direct methods.

  • Home Activity Recognition by Sounds of Daily Life Using Improved Feature Extraction Method

    João Filipe PAPEL  Tatsuji MUNAKA  

     
    PAPER

      Pubricized:
    2022/08/23
      Vol:
    E106-D No:4
      Page(s):
    450-458

    In recent years, with the aging of society, many kinds of research have been actively conducted to recognize human activity in a home to watch over the elderly. Multiple sensors for activity recognition are used. However, we need to consider privacy when using these sensors. One of the candidates of the sensors that keep privacy is a sound sensor. MFCC (Mel-Frequency Cepstral Coefficient) is widely used as a feature extraction algorithm for voice recognition. However, it is not suitable to apply conventional MFCC to activity recognition by sounds of daily life. We denote “sounds of daily life” as “life sounds” simply in this paper. The reason is that conventional MFCC does not extract well several features of life sounds that appear at high frequencies. This paper proposes the improved MFCC and reports the evaluation results of activity recognition by machine learning SVM (Support Vector Machine) using features extracted by improved MFCC.

  • An Efficient Combined Bit-Width Reducing Method for Ising Models

    Yuta YACHI  Masashi TAWADA  Nozomu TOGAWA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2023/01/12
      Vol:
    E106-D No:4
      Page(s):
    495-508

    Annealing machines such as quantum annealing machines and semiconductor-based annealing machines have been attracting attention as an efficient computing alternative for solving combinatorial optimization problems. They solve original combinatorial optimization problems by transforming them into a data structure called an Ising model. At that time, the bit-widths of the coefficients of the Ising model have to be kept within the range that an annealing machine can deal with. However, by reducing the Ising-model bit-widths, its minimum energy state, or ground state, may become different from that of the original one, and hence the targeted combinatorial optimization problem cannot be well solved. This paper proposes an effective method for reducing Ising model's bit-widths. The proposed method is composed of two processes: First, given an Ising model with large coefficient bit-widths, the shift method is applied to reduce its bit-widths roughly. Second, the spin-adding method is applied to further reduce its bit-widths to those that annealing machines can deal with. Without adding too many extra spins, we efficiently reduce the coefficient bit-widths of the original Ising model. Furthermore, the ground state before and after reducing the coefficient bit-widths is not much changed in most of the practical cases. Experimental evaluations demonstrate the effectiveness of the proposed method, compared to existing methods.

  • Output Power Characterization of Flexible Thermoelectric Power Generators

    Daiki KANSAKU  Nobuhiro KAWASE  Naoki FUJIWARA  Faizan KHAN  Arockiyasamy Periyanayaga KRISTY  Kuruvankatil Dharmajan NISHA  Toshitaka YAMAKAWA  Kazushi IKEDA  Yasuhiro HAYAKAWA  Kenji MURAKAMI  Masaru SHIMOMURA  Hiroya IKEDA  

     
    BRIEF PAPER

      Pubricized:
    2022/04/21
      Vol:
    E105-C No:10
      Page(s):
    639-642

    To facilitate the reuse of environmental waste heat in our society, we have developed high-efficiency flexible thermoelectric power generators (TEPGs). In this study, we investigated the thermoelectromotive force (TEMF) and output power of a prototype device with 50 pairs of Π-type structures using a homemade measurement system for flexible TEPGs in order to evaluate their characteristics along the thickness direction. The prototype device consisted of C fabrics (CAFs) used as p-type materials, NiCu fabrics (NCFs) used as n-type materials, and Ag fabrics (AGFs) used as metal electrodes. Applying a temperature difference of 5K, we obtained a TEMF of 150μV and maximum output power of 6.4pW. The obtained TEMF was smaller than that expected from the Seebeck coefficients of each fabric, which is considered to be mainly because of the influence of contact thermal resistance at the semiconductor-fabric/AGF interfaces.

  • On the Sum-of-Squares of Differential Distribution Table for (n, n)-Functions

    Rong CHENG  Yu ZHOU  Xinfeng DONG  Xiaoni DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/03/10
      Vol:
    E105-A No:9
      Page(s):
    1322-1329

    S-box is one of the core components of symmetric cryptographic algorithms, but differential distribution table (DDT) is an important tool to research some properties of S-boxes to resist differential attacks. In this paper, we give a relationship between the sum-of-squares of DDT and the sum-of-squares indicator of (n, m)-functions based on the autocorrelation coefficients. We also get some upper and lower bounds on the sum-of-squares of DDT of balanced (n, m)-functions, and prove that the sum-of-squares of DDT of (n, m)-functions is affine invariant under affine affine equivalent. Furthermore, we obtain a relationship between the sum-of-squares of DDT and the signal-to-noise ratio of (n, m)-functions. In addition, we calculate the distributions of the sum-of-squares of DDT for all 3-bit S-boxes, the 4-bit optimal S-boxes and all 302 balanced S-boxes (up to affine equivalence), data experiments verify our results.

  • Improving Image Pair Selection for Large Scale Structure from Motion by Introducing Modified Simpson Coefficient

    Takaharu KATO  Ikuko SHIMIZU  Tomas PAJDLA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/06/08
      Vol:
    E105-D No:9
      Page(s):
    1590-1599

    Selecting visually overlapping image pairs without any prior information is an essential task of large-scale structure from motion (SfM) pipelines. To address this problem, many state-of-the-art image retrieval systems adopt the idea of bag of visual words (BoVW) for computing image-pair similarity. In this paper, we present a method for improving the image pair selection using BoVW. Our method combines a conventional vector-based approach and a set-based approach. For the set similarity, we introduce a modified version of the Simpson (m-Simpson) coefficient. We show the advantage of this measure over three typical set similarity measures and demonstrate that the combination of vector similarity and the m-Simpson coefficient effectively reduces false positives and increases accuracy. To discuss the choice of vocabulary construction, we prepared both a sampled vocabulary on an evaluation dataset and a basic pre-trained vocabulary on a training dataset. In addition, we tested our method on vocabularies of different sizes. Our experimental results show that the proposed method dramatically improves precision scores especially on the sampled vocabulary and performs better than the state-of-the-art methods that use pre-trained vocabularies. We further introduce a method to determine the k value of top-k relevant searches for each image and show that it obtains higher precision at the same recall.

  • Characterization and Construction of Generalized Bent Functions with Flexible Coefficients

    Zhiyao YANG  Pinhui KE  Zhixiong CHEN  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2021/10/29
      Vol:
    E105-A No:5
      Page(s):
    887-891

    In 2017, Tang et al. provided a complete characterization of generalized bent functions from ℤ2n to ℤq(q = 2m) in terms of their component functions (IEEE Trans. Inf. Theory. vol.63, no.7, pp.4668-4674). In this letter, for a general even q, we aim to provide some characterizations and more constructions of generalized bent functions with flexible coefficients. Firstly, we present some sufficient conditions for a generalized Boolean function with at most three terms to be gbent. Based on these results, we give a positive answer to a remaining question proposed by Hodžić in 2015. We also prove that the sufficient conditions are also necessary in some special cases. However, these sufficient conditions whether they are also necessary, in general, is left as an open problem. Secondly, from a uniform point of view, we provide a secondary construction of gbent function, which includes several known constructions as special cases.

  • Generation of Surface Wave in C-Band Automotive On-Glass Antenna and an Easily Realizable Suppression Method for Improving Antenna Characteristics

    Osamu KAGAYA  Keisuke ARAI  Takato WATANABE  Takuji ARIMA  Toru UNO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/08/02
      Vol:
    E105-B No:1
      Page(s):
    51-57

    In this paper, the influence of surface waves on the characteristics of on-glass antennas is clarified to enable appropriates design of C-band automotive on-glass antennas. Composite glasses are used in automotive windshields. These automotive composite glasses are composed of three layers. First, the surface wave properties of composite glass are investigated. Next, the effects of surface waves on the reflection coefficient characteristics of on-glass antennas are investigated. Finally, the antenna placement to reduce surface wave effect will be presented. Electromagnetic field analysis of a dipole antenna placed at the center of a 300mm × 300mm square flat composite glass showed that the electric field strength in the glass had ripples with the half wavelength period of the surface waves. Therefore, it was confirmed that standing waves are generated because of these surface waves. In addition, it is confirmed that ripples occur in the reflection coefficient at frequencies. Glass size is divisible by each of those guide wavelengths. Furthermore, it was clarified that the reflection coefficient fluctuates with respect to the distance between the antenna and a metal frame, which is attached to the end face in the direction perpendicular to the thickness of the glass because of the influence of standing waves caused by the surface waves; additionally, the reflection coefficient gets worse when the distance between the antenna and the metal frame is an integral multiple of one half wavelength. A similar tendency was observed in an electric field analysis using a model that was shaped like the actual windshield shape. Because radiation patterns also change as a result of the influence of surface waves and metal frames, the results imply that it is necessary to consider the actual device size and the metal frames when designing automotive on-glass antennas.

  • Constrained Design of FIR Filters with Sparse Coefficients

    Tatsuki ITASAKA  Ryo MATSUOKA  Masahiro OKUDA  

     
    PAPER

      Pubricized:
    2021/05/13
      Vol:
    E104-A No:11
      Page(s):
    1499-1508

    We propose an algorithm for the constrained design of FIR filters with sparse coefficients. In general filter design approaches, as the length of the filter increases, the number of multipliers used to construct the filter increases. This is a serious problem, especially in two-dimensional FIR filter designs. The FIR filter coefficients designed by the least-squares method with peak error constraint are optimal in the sense of least-squares within a given order, but not necessarily optimal in terms of constructing a filter that meets the design specification under the constraints on the number of coefficients. That is, a higher-order filter with several zero coefficients can construct a filter that meets the specification with a smaller number of multipliers. We propose a two-step approach to design constrained sparse FIR filters. Our method minimizes the number of non-zero coefficients while the frequency response of the filter that meets the design specification. It achieves better performance in terms of peak error than conventional constrained least-squares designs with the same or higher number of multipliers in both one-dimensional and two-dimensional filter designs.

  • Minimax Design of Sparse IIR Filters Using Sparse Linear Programming Open Access

    Masayoshi NAKAMOTO  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2021/02/15
      Vol:
    E104-A No:8
      Page(s):
    1006-1018

    Recent trends in designing filters involve development of sparse filters with coefficients that not only have real but also zero values. These sparse filters can achieve a high performance through optimizing the selection of the zero coefficients and computing the real (non-zero) coefficients. Designing an infinite impulse response (IIR) sparse filter is more challenging than designing a finite impulse response (FIR) sparse filter. Therefore, studies on the design of IIR sparse filters have been rare. In this study, we consider IIR filters whose coefficients involve zero value, called sparse IIR filter. First, we formulate the design problem as a linear programing problem without imposing any stability condition. Subsequently, we reformulate the design problem by altering the error function and prepare several possible denominator polynomials with stable poles. Finally, by incorporating these methods into successive thinning algorithms, we develop a new design algorithm for the filters. To demonstrate the effectiveness of the proposed method, its performance is compared with that of other existing methods.

  • Massive MIMO Antenna Arrangement Considering Spatial Efficiency and Correlation between Antennas in Mobile Communications

    Kiyoaki ITOI  Masanao SASAKI  Hiroaki NAKABAYASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    570-581

    This paper presents an algorithm to arrange a large number of antenna elements in the limited space of massive MIMO base station antenna without degrading the communication quality under a street-cell line-of-sight environment in mobile communications. The proposed algorithm works by using mathematical optimization in which the objective function is the correlation coefficient between the channel responses of two elements of the base station antenna, according to an algorithm constructed based on the results obtained through basic examinations of the characteristics of the correlation coefficient between channel responses. The channel responses are computed by using the propagation path information obtained by ray-tracing. The arrangements output by the proposed algorithm are mainly evaluated by channel capacity comparison with uniformly spaced arrangements on the vertical plane in single user and multiuser environments. The evaluation results of these arrangements in downlink demonstrate the superiority of the arrangements generated by the proposed algorithm, especially in term of robustness against an increase in the number of users.

  • Effect of Phonon-Drag Contributed Seebeck Coefficient on Si-Wire Thermopile Voltage Output

    Khotimatul FAUZIAH  Yuhei SUZUKI  Yuki NARITA  Yoshinari KAMAKURA  Takanobu WATANABE  Faiz SALLEH  Hiroya IKEDA  

     
    BRIEF PAPER

      Vol:
    E102-C No:6
      Page(s):
    475-478

    In order to optimize the performance of thermoelectric devices, we have fabricated and characterized the micrometer-scaled Si thermopile preserving the phonon-drag effect, where the Si thermopile consists of p- and n-type Si wire pairs. The measured Seebeck coefficient of the p-type Si wire was found to be higher than the theoretical value calculated only from the carrier transport, which indicates the contribution of phonon-drag part. Moreover, the measured Seebeck coefficient increased with increasing the width of Si wire. This fact is considered due to dependency of phonon-drag part on the wire width originating from the reduction of phonon-boundary scattering. These contributions were observed also in measured output voltage of Si-wire thermopile. Hence, the output voltage of Si-wire thermopile is expected can be enhanced by utilizing the phonon-drag effect in Si wire by optimizing its size and carrier concentration.

  • Adaptive Wireless Power Transfer System without Feedback Information Using Single Matching Network

    Jae-Ho LEE  Dong-Wook SEO  

     
    PAPER-Wireless Power Transfer

      Pubricized:
    2018/08/21
      Vol:
    E102-B No:2
      Page(s):
    257-265

    It is well known that the power transfer efficiency (PTE) of a wireless power transfer (WPT) system is maximized at a specific coupling coefficient under the fixed system parameters. For an adaptive WPT system, various attempts have been made to achieve the maximum PTE by changing the system parameters. Applying the input matching networks to the WPT system is one of the most popular implementation methods to change the source impedance and improve the PTE. In this paper, we derive the optimum source condition for the given load and the achievable maximum PTE under the optimum source condition in a closed-form. Furthermore, we propose a method to estimate the input impedance, without feedback information, and an input matching network structure that transforms the source impedance into the optimum source obtained from the estimated input impedance. The proposed technique is successfully implemented at a resonant frequency of 13.56MHz. The experimental results are in close agreement with the theoretical achievable maximum PTE and show that the use of only a single matching network can sufficiently achieve a PTE close to the ideal maximum PTE.

  • Field Uniformity and Correlation Coefficient Analysis of KRISS Reverberation Chamber

    Aditia Nur BAKTI  No-Weon KANG  Jae-Yong KWON  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2018/04/25
      Vol:
    E101-B No:11
      Page(s):
    2289-2296

    Reverberation chambers (RCs) are used widely in the electromagnetic measurement area. An RC is designed to have a long reverberation time, generate numerous modes, and provide good field uniformity within the chamber. The purpose of this paper is to describe the design process and measurement of the KRISS Reverberation Chamber (KRC). KRC models with 4.5m × 3.4m × 2.8m dimensions are simulated by 3D numerical simulation software. The field uniformity and correlation coefficient are then analyzed at 200MHz to obtain the optimized model. The simulation results show good performance in terms of field uniformity and are confirmed by measurement from 200MHz to 1GHz. The lowest usable frequency (LUF) of KRC was confirmed by field uniformity to be 200MHz. However, the stirrer correlation coefficient results show good performance above 300MHz.

  • Wide Angle Scanning Circular Polarized Meta-Structured Antenna Array

    Chang-Hyun LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    2017-2023

    This paper presents a meta-structured circular polarized array antenna with wide scan angle. In order to widen the scanning angle of array antennas, this paper investigates unit antenna beamwidth and the coupling effects between array elements, both of which directly affect the steering performance. As a result, the optimal array distance, the mode configuration, and the antenna structure are elucidated. By using the features of the miniaturized mu-zero resonance (MZR) antenna, it is possible to design the antenna at optimum array distance for wide beamwidth. In addition, by modifying via position and gap configuration of the antenna, it is possible to optimize the mode configuration for optimal isolation. Finally, the 3dB steerable angle of 66° is successfully demonstrated using a 1x8 MZR CP antenna array without any additional decoupling structure. The measured beam patterns at a scan angle of 0°, 22°, 44°, and 66°agree well with the simulated beam patterns.

1-20hit(171hit)