The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OEF(172hit)

21-40hit(172hit)

  • Wide Angle Scanning Circular Polarized Meta-Structured Antenna Array

    Chang-Hyun LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/03/14
      Vol:
    E101-B No:9
      Page(s):
    2017-2023

    This paper presents a meta-structured circular polarized array antenna with wide scan angle. In order to widen the scanning angle of array antennas, this paper investigates unit antenna beamwidth and the coupling effects between array elements, both of which directly affect the steering performance. As a result, the optimal array distance, the mode configuration, and the antenna structure are elucidated. By using the features of the miniaturized mu-zero resonance (MZR) antenna, it is possible to design the antenna at optimum array distance for wide beamwidth. In addition, by modifying via position and gap configuration of the antenna, it is possible to optimize the mode configuration for optimal isolation. Finally, the 3dB steerable angle of 66° is successfully demonstrated using a 1x8 MZR CP antenna array without any additional decoupling structure. The measured beam patterns at a scan angle of 0°, 22°, 44°, and 66°agree well with the simulated beam patterns.

  • Seebeck Coefficient of Flexible Carbon Fabric for Wearable Thermoelectric Device

    Faizan KHAN  Veluswamy PANDIYARASAN  Shota SAKAMOTO  Mani NAVANEETHAN  Masaru SHIMOMURA  Kenji MURAKAMI  Yasuhiro HAYAKAWA  Hiroya IKEDA  

     
    BRIEF PAPER

      Vol:
    E101-C No:5
      Page(s):
    343-346

    We have measured the Seebeck coefficient of a carbon fabric (CAF) using a homemade measurement system for flexible thermoelectric materials to evaluate Seebeck coefficient along the thickness direction. Our equipment consists of a thermocouple (TC) electrode contacted with a resistive heater and another TC electrode attached to a heat sink. A flexible sample is sandwiched with these TC electrodes and pressed by weights. The equipment is set on a weighing machine in order to confirm and hold the pressing force at the contact between the electrodes and the soft sample. Cu and Pb plates were measured as a reference material to calibrate and clarify the accuracy of our measurement system, and its validity was confirmed. The Seebeck coefficient of a single CAF layer ranged 4.3-5.1 µV/K, independent of extra weight. This fact indicates that the weight of heat sink is enough for stable contact at the TC-electrode/CAF interface. It was found that the Seebeck coefficient of layered CAF increases with an increase in the number of layers, which suggests the influence of the air between the CAF layers even though the heavy weight is used.

  • Multiple Speech Source Separation with Non-Sparse Components Recovery by Using Dual Similarity Determination

    Maoshen JIA  Jundai SUN  Feng DENG  Junyue SUN  

     
    PAPER-Elemental Technologies for human behavior analysis

      Pubricized:
    2018/01/19
      Vol:
    E101-D No:4
      Page(s):
    925-932

    In this work, a multiple source separation method with joint sparse and non-sparse components recovery is proposed by using dual similarity determination. Specifically, a dual similarity coefficient is designed based on normalized cross-correlation and Jaccard coefficients, and its reasonability is validated via a statistical analysis on a quantitative effective measure. Thereafter, by regarding the sparse components as a guide, the non-sparse components are recovered using the dual similarity coefficient. Eventually, a separated signal is obtained by a synthesis of the sparse and non-sparse components. Experimental results demonstrate the separation quality of the proposed method outperforms some existing BSS methods including sparse components separation based methods, independent components analysis based methods and soft threshold based methods.

  • Performance Analysis of the Generalized Sidelobe Canceller in Finite Sample Size and Correlative Interference Situations

    Xu WANG  Julan XIE  Zishu HE  Qi ZHANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:11
      Page(s):
    2358-2369

    In the scenario of finite sample size, the performance of the generalized sidelobe canceller (GSC) is still affected by the desired signal even if all signal sources are independent with each other. Firstly, the novel expression of weight vector of the auxiliary array is derived under the circumstances of finite sample size. Utilizing this new weight vector and considering the correlative interferences, the general expression for the interference cancellation ratio (CR) is developed. Then, the impacts of the CR performance are further analyzed for the parameters including the input signal-to-noise ratio (SNR), the auxiliary array size, the correlation coefficient between the desired signal and interference as well as the snapshots of the sample data, respectively. Some guidelines can thus be given for the practical application. Numerical simulations demonstrate the agreement between the simulation results and the analytical results.

  • Effect of Hardness on Wear and Abrasion Resistance of Silver Plating on Copper Alloy

    Shigeru SAWADA  Song-Zhu KURE-CHU  Rie NAKAGAWA  Toru OGASAWARA  Hitoshi YASHIRO  Yasushi SAITOH  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    695-701

    This study is aimed at clarifying the mechanism of wear process for Ag plating. The samples of different hardness Ag plating on copper alloys were prepared as coupon and embossment specimens, which simulated terminal contacts. During the sliding test, the contact resistance and the friction coefficient versus sliding distance are measured. The surface observation and surface roughness of the Ag films after wear tests were investigated. As results, the hard Ag plating film (120 Hv) exhibited higher contact resistance comparing to the soft Ag plating film (80 Hv). The soft Ag film delivered wider wear trace on coupon specimens compared to the hard one. Moreover, the observation of tribofilms formed on the Ag films after wear tests suggested that a mixed-type of adhesive and abrasive wears occurred for both of soft and hard Ag films. Furthermore, the fretting corrosion resistance of Ag plating samples with different hardness was also investigated. As results, the wear resistance of hard Ag film was stronger than that of soft Ag film.

  • Neighbor-Interactive Bee Colony for Problems with Local Structures

    Phuc Nguyen HONG  Chang Wook AHN  Jaehoon (Paul) JEONG  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E100-A No:9
      Page(s):
    2034-2037

    In this letter, we integrate domain information into the original artificial bee colony algorithm to create a novel, neighbor-interactive bee colony algorithm. We use the Hamming distance measure to compute variable dependency between two binary variables and employ the Gini correlation coefficient to compute variable relation between integer variables. The proposed optimization method was evaluated by minimizing binary Ising models, integer Potts models, and trapped functions. Experimental results show that the proposed method outperformed the traditional artificial bee colony and other meta-heuristics in all the testing cases.

  • Experimental Study of Mixed-Mode Oscillations in a Four-Segment Piecewise Linear Bonhoeffer-van der Pol Oscillator under Weak Periodic Perturbation -Successive and Nonsuccessive MMO-Incrementing Bifurcations-

    Tri Quoc TRUONG  Tadashi TSUBONE  Kuniyasu SHIMIZU  Naohiko INABA  

     
    PAPER-Nonlinear Problems

      Vol:
    E100-A No:7
      Page(s):
    1522-1531

    This report presents experimental measurements of mixed-mode oscillations (MMOs) generated by a weakly driven four-segment piecewise linear Bonhoeffer-van der Pol (BVP) oscillator. Such a roughly approximated simple piecewise linear circuit can generate MMOs and mixed-mode oscillation-incrementing bifurcations (MMOIBs). The laboratory experiments well agree with numerical results. We experimentally and numerically observe time series and Lorenz plots of MMOs generated by successive and nonsuccessive MMOIBs.

  • Phonon-Drag Effect on Seebeck Coefficient in Co-Doped Si Wire with Submicrometer-Scaled Cross Section

    Yuhei SUZUKI  Faiz SALLEH  Yoshinari KAMAKURA  Masaru SHIMOMURA  Hiroya IKEDA  

     
    BRIEF PAPER

      Vol:
    E100-C No:5
      Page(s):
    486-489

    The Seebeck coefficient of Si wire co-doped with P and Ga atoms is investigated for applying thermoelectric devices. The observed Seebeck coefficient is closed to the theoretical values of electronic part of Seebeck coefficient due to the electronic transport. From the estimation of phonon scattering processes, it is found that the phonon-drag contribution to the Seebeck coefficient in co-doped Si wire is mainly governed by the phonon-boundary scattering.

  • Phonon-Drag Contribution to Seebeck Coefficient in P-Type Si, Ge and Si1-xGex

    Veerappan MANIMUTHU  Muthusamy OMPRAKASH  Mukannan ARIVANANDHAN  Faiz SALLEH  Yasuhiro HAYAKAWA  Hiroya IKEDA  

     
    BRIEF PAPER

      Vol:
    E100-C No:5
      Page(s):
    482-485

    The phonon-drag contribution to the Seebeck coefficient (Sph) for p-type Si, Ge and Si1-xGex is investigated for thermoelectric applications. The Sph in Si and Ge is found to mainly determined by the phonon velocity, phonon mean free path and carrier mobility associated with acoustic deformation potential scattering. Moreover, the Sph in Si1-xGex is predictable by the above-mentioned material parameters interpolated with those in Si and Ge.

  • Radar Modulation Identification Using Inequality Measurement in Frequency Domain

    Kyung-Jin YOU  Ha-Eun JEON  Hyun-Chool SHIN  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:4
      Page(s):
    975-981

    In this paper, we proposed a method for radar modulation identification based on the measurement of inequality in the frequency domain. Gini's coefficient was used to exploit the inequality in the powers of spectral components. The maximum likelihood classifier was used to classify the detected radar signal into four types of modulations: unmodulated signal (UM), linear frequency modulation (LFM), non-linear frequency modulation (NLFM), and frequency shift keying (FSK). The simulation results demonstrated that the proposed method achieves an overall identification accuracy of 98.61% at a signal-to-noise ratio (SNR) of -6dB without a priori information such as carrier frequency, pulse arrival times or pulse width.

  • Correlation-Based Optimal Chirp Rate Allocation for Chirp Spread Spectrum Using Multiple Linear Chirps

    Kwang-Yul KIM  Seung-Woo LEE  Yu-Min HWANG  Jae-Seang LEE  Yong-Sin KIM  Jin-Young KIM  Yoan SHIN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:4
      Page(s):
    1088-1091

    A chirp spread spectrum (CSS) system uses a chirp signal which changes the instantaneous frequency according to time for spreading a transmission bandwidth. In the CSS system, the transmission performance can be simply improved by increasing the time-bandwidth product which is known as the processing gain. However, increasing the transmission bandwidth is limited because of the spectrum regulation. In this letter, we propose a correlation-based chirp rate allocation method to improve the transmission performance by analyzing the cross-correlation coefficient in the same time-bandwidth product. In order to analyze the transmission performance of the proposed method, we analytically derive the cross-correlation coefficient according to the time-bandwidth separation product and simulate the transmission performance. The simulation results show that the proposed method can analytically allocate the optimal chirp rate and improve the transmission performance.

  • Scattered Reflections on Scattering Parameters — Demystifying Complex-Referenced S Parameters — Open Access

    Shuhei AMAKAWA  

     
    INVITED PAPER

      Vol:
    E99-C No:10
      Page(s):
    1100-1112

    The most commonly used scattering parameters (S parameters) are normalized to a real reference resistance, typically 50Ω. In some cases, the use of S parameters normalized to some complex reference impedance is essential or convenient. But there are different definitions of complex-referenced S parameters that are incompatible with each other and serve different purposes. To make matters worse, different simulators implement different ones and which ones are implemented is rarely properly documented. What are possible scenarios in which using the right one matters? This tutorial-style paper is meant as an informal and not overly technical exposition of some such confusing aspects of S parameters, for those who have a basic familiarity with the ordinary, real-referenced S parameters.

  • A New Design Formula of Coupling Coefficient between Antenna and Resonator for Efficient Design of Filtering Antenna

    Masataka OHIRA  Kazuma YAMANAKA  Zhewang MA  

     
    PAPER

      Vol:
    E99-C No:7
      Page(s):
    744-750

    This paper proposes a new design formula of coupling coefficient between antenna and resonator for an efficient design of filtering antennas consisting of an antenna and resonators. The filtering antenna can be designed by introducing a well-established filter design theory. For such a design approach, an external Q factor at input port, coupling coefficients, and a radiation Q factor of the antenna need to be evaluated. However, conventional design methods have a time-consuming procedure, since there are no effective techniques to evaluate the coupling coefficient between resonator and antenna. To solve the problem, we derive the new design formula using only amplitude property of input reflection responses obtained from a coupled structure of resonator and antenna. As an example, a third-order filtering antenna is synthesized, designed, and tested at 2.45 GHz, which numerically and experimentally validates the effectiveness of the derived equation.

  • Wheeze Detection Algorithm Based on Correlation-Coefficients Analysis

    Jiarui LI  Ying HONG  Chengpeng HAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:3
      Page(s):
    760-764

    Wheeze is a general sign for obstructive airway diseases whose clinical diagnosis mainly depends on auscultating or X-ray imaging with subjectivity or harm. Therefore, this paper introduces an automatic, noninvasive method to detect wheeze which consists of STFT decomposition, preprocessing of the spectrogram, correlation-coefficients calculating and duration determining. In particular, duration determining takes the Haas effect into account, which facilitates us to achieve a better determination. Simulation result shows that the sensibility (SE), the specificity (SP) and the accuracy (AC) are 88.57%, 97.78% and 93.75%, respectively, which indicates that this method could be an efficient way to detect wheeze.

  • Design and Fabrication of Three-Bit Reconfigurable Bandpass Filter Using Branch-Line Type Variable Resonator

    Ryosuke KOBAYASHI  Takumi KATO  Kazuhiro AZUMA  Yasushi YAMAO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:7
      Page(s):
    636-643

    Current mobile communication terminals are equipped with multiple RF circuits that cover all frequency bands assigned for the communication. In order to make efficient use of frequency spectrum and to reduce circuits in a terminal, a low-loss reconfigurable RF filter is necessary to flexibly change RF frequencies. In this paper, a new reconfigurable bandpass filter (BPF) having eight-frequency (three-bit) selection capability is proposed. It employs branch-line switched type variable resonators that provide low insertion loss. One of the design issues is how to control pass bandwidths among selectable frequencies. In order to analyze the bandwidth variation of the reconfigurable BPF, we calculate the changes of external Q and coupling coefficients. It is shown that the inductive coupling design can achieve less variation of bandwidth for the reconfigurable BPF, compared with commonly used capacitive coupling design. A prototype BPF on a printed circuit board with high dielectric constant substrate has been fabricated and evaluated in 2 GHz bands. It presents performance very close to the design results with respect to insertion loss, center frequency and passband bandwidth. Low insertion loss of less than 1 dB is achieved among the eight frequencies.

  • Reflection and Transmission Characteristics of Laminated Structures Consisting a Dipole Array Sheet and a Wire Grid and Dielectric Layer

    Shinichiro YAMAMOTO  Kenichi HATAKEYAMA  Takanori TSUTAOKA  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1235-1241

    This paper proposes reflection and transmission control panels using artificially designed materials. As the artificially designed material, finite- and infinite-length metal wire array sheets are used here. Laminated structures consisting of the metal wire array sheets and dielectric material are proposed. Reflection and transmission characteristics of these structures can be controlled by changing the metal wire parameters such as wire length, spacing gaps between the wires, and the dielectric material's thickness and relative permittivity. The reflection and transmission characteristics of the laminated structures are evaluated by measurements in free space and by transmission line theory.

  • Usefulness of Transmission Ellipsometric Method for Evaluation of Electro-optic Materials

    Toshiki YAMADA  Akira OTOMO  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    143-146

    A transmission ellipsometric method without an aperture was recently developed to characterize the electro-optic (EO) performance of EO polymers. The method permits much simpler optical setup compared to the reflection method, and allows easy performance of the incident angle dependence measurements using a conventional glass substrate and uncollimated beam. This paper shows the usefulness of this method for a simple and reliable evaluation of the EO coefficient both for organic and inorganic EO materials, as well as analysis for uniaxial anisotropic materials.

  • Perception of Image Characteristics with Compressive Measurements

    Jie GUO  Bin SONG  Fang TIAN  Haixiao LIU  Hao QIN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2014/09/22
      Vol:
    E97-D No:12
      Page(s):
    3234-3235

    For compressed sensing, to address problems which do not involve reconstruction, a correlation analysis between measurements and the transform coefficients is proposed. It is shown that there is a linear relationship between them, which indicates that we can abstract the inner property of images directly in the measurement domain.

  • Improved Spectral Envelope Coding Algorithm Using Adaptive Filtering for G.729.1

    Keunseok CHO  Sangbae JEONG  Minsoo HAHN  

     
    LETTER-Speech and Hearing

      Vol:
    E97-A No:11
      Page(s):
    2254-2257

    This paper proposes a new algorithm to encode the spectral envelope for G.729.1 more accurately. It applies the normalized least-mean- square (NLMS) algorithm to each subband energy of the modified discrete cosine transform (MDCT) in the time-domain alias cancellation (TDAC) of G.729.1. By utilizing the estimation error of subband energies by means of NLMS, allocated bit reduction for spectral envelope coding is achieved. The saved bits are then reused to improve the spectral envelope estimation and thus enhance the sound quality. Experimental results confirm that the proposed algorithm improves the sound quality under both clean and packet loss conditions.

  • Spatial Division Transmission without Signal Processing for MIMO Detection Utilizing Two-Ray Fading

    Ken HIRAGA  Kazumitsu SAKAMOTO  Maki ARAI  Tomohiro SEKI  Tadao NAKAGAWA  Kazuhiro UEHARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2491-2501

    This paper presents a spatial division (SD) transmission method based on two-ray fading that dispenses with the high signal processing cost of multiple-input and multiple-output (MIMO) detection and antennas with narrow beamwidth. We show the optimum array geometries as functions of the transmission distance for providing a concrete array design method. Moreover, we clarify achievable channel capacity considering reflection coefficients that depend on the polarization, incident angle, and dielectric constant. When the ground surface is conductive, for two- and three-element arrays, channel capacity is doubled and tripled, respectively, over that of free space propagation. We also clarify the application limit of this method for a dielectric ground by analyzing the channel capacity's dependency on the dielectric constant. With this method, increased channel capacity by SD transmission can be obtained merely by placing antennas of wireless transceiver sets that have only SISO (single-input and single-output) capability in a two-ray propagation environment. By using formulations presented in this paper for the first time and adding discussions on the adoption of polarization multiplexing, we clarify antenna geometries of SD transmission systems using polarization multiplexing for up to six streams.

21-40hit(172hit)