The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

661-680hit(3945hit)

  • Quantum Associative Memory with Quantum Neural Network via Adiabatic Hamiltonian Evolution

    Yoshihiro OSAKABE  Hisanao AKIMA  Masao SAKURABA  Mitsunaga KINJO  Shigeo SATO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/08/09
      Vol:
    E100-D No:11
      Page(s):
    2683-2689

    There is increasing interest in quantum computing, because of its enormous computing potential. A small number of powerful quantum algorithms have been proposed to date; however, the development of new quantum algorithms for practical use remains essential. Parallel computing with a neural network has successfully realized certain unique functions such as learning and recognition; therefore, the introduction of certain neural computing techniques into quantum computing to enlarge the quantum computing application field is worthwhile. In this paper, a novel quantum associative memory (QuAM) is proposed, which is achieved with a quantum neural network by employing adiabatic Hamiltonian evolution. The memorization and retrieval procedures are inspired by the concept of associative memory realized with an artificial neural network. To study the detailed dynamics of our QuAM, we examine two types of Hamiltonians for pattern memorization. The first is a Hamiltonian having diagonal elements, which is known as an Ising Hamiltonian and which is similar to the cost function of a Hopfield network. The second is a Hamiltonian having non-diagonal elements, which is known as a neuro-inspired Hamiltonian and which is based on interactions between qubits. Numerical simulations indicate that the proposed methods for pattern memorization and retrieval work well with both types of Hamiltonians. Further, both Hamiltonians yield almost identical performance, although their retrieval properties differ. The QuAM exhibits new and unique features, such as a large memory capacity, which differs from a conventional neural associative memory.

  • AIGIF: Adaptively Integrated Gradient and Intensity Feature for Robust and Low-Dimensional Description of Local Keypoint

    Songlin DU  Takeshi IKENAGA  

     
    PAPER-Vision

      Vol:
    E100-A No:11
      Page(s):
    2275-2284

    Establishing local visual correspondences between images taken under different conditions is an important and challenging task in computer vision. A common solution for this task is detecting keypoints in images and then matching the keypoints with a feature descriptor. This paper proposes a robust and low-dimensional local feature descriptor named Adaptively Integrated Gradient and Intensity Feature (AIGIF). The proposed AIGIF descriptor partitions the support region surrounding each keypoint into sub-regions, and classifies the sub-regions into two categories: edge-dominated ones and smoothness-dominated ones. For edge-dominated sub-regions, gradient magnitude and orientation features are extracted; for smoothness-dominated sub-regions, intensity feature is extracted. The gradient and intensity features are integrated to generate the descriptor. Experiments on image matching were conducted to evaluate performances of the proposed AIGIF. Compared with SIFT, the proposed AIGIF achieves 75% reduction of feature dimension (from 128 bytes to 32 bytes); compared with SURF, the proposed AIGIF achieves 87.5% reduction of feature dimension (from 256 bytes to 32 bytes); compared with the state-of-the-art ORB descriptor which has the same feature dimension with AIGIF, AIGIF achieves higher accuracy and robustness. In summary, the AIGIF combines the advantages of gradient feature and intensity feature, and achieves relatively high accuracy and robustness with low feature dimension.

  • Off-Grid Frequency Estimation with Random Measurements

    Xushan CHEN  Jibin YANG  Meng SUN  Jianfeng LI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:11
      Page(s):
    2493-2497

    In order to significantly reduce the time and space needed, compressive sensing builds upon the fundamental assumption of sparsity under a suitable discrete dictionary. However, in many signal processing applications there exists mismatch between the assumed and the true sparsity bases, so that the actual representative coefficients do not lie on the finite grid discretized by the assumed dictionary. Unlike previous work this paper introduces the unified compressive measurement operator into atomic norm denoising and investigates the problems of recovering the frequency support of a combination of multiple sinusoids from sub-Nyquist samples. We provide some useful properties to ensure the optimality of the unified framework via semidefinite programming (SDP). We also provide a sufficient condition to guarantee the uniqueness of the optimizer with high probability. Theoretical results demonstrate the proposed method can locate the nonzero coefficients on an infinitely dense grid over a wide range of SNR case.

  • Modeling Attack Process of Advanced Persistent Threat Using Network Evolution

    Weina NIU  Xiaosong ZHANG  Guowu YANG  Ruidong CHEN  Dong WANG  

     
    PAPER-Operating system and network Security

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2275-2286

    Advanced Persistent Threat (APT) is one of the most serious network attacks that occurred in cyberspace due to sophisticated techniques and deep concealment. Modeling APT attack process can facilitate APT analysis, detection, and prediction. However, current techniques focus on modeling known attacks, which neither reflect APT attack dynamically nor take human factors into considerations. In order to overcome this limitation, we propose a Targeted Complex Attack Network (TCAN) model for APT attack process based on dynamic attack graph and network evolution. Compared with current models, our model addresses human factors by conducting a two-layer network structure. Meanwhile, we present a stochastic model based on states change in the target network to specify nodes involved in the procedure of this APT. Besides, our model adopts time domain to expand the traditional attack graph into dynamic attack network. Our model is featured by flexibility, which is proven through changing the related parameters. In addition, we propose dynamic evolution rules based on complex network theory and characteristics of the actual attack scenarios. Finally, we elaborate a procedure to add nodes by a matrix operation. The simulation results show that our model can model the process of attack effectively.

  • Fraud Detection in Comparison-Shopping Services: Patterns and Anomalies in User Click Behaviors

    Sang-Chul LEE  Christos FALOUTSOS  Dong-Kyu CHAE  Sang-Wook KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/07/10
      Vol:
    E100-D No:10
      Page(s):
    2659-2663

    This paper deals with a novel, interesting problem of detecting frauds in comparison-shopping services (CSS). In CSS, there exist frauds who perform excessive clicks on a target item. They aim at making the item look very popular and subsequently ranked high in the search and recommendation results. As a result, frauds may distort the quality of recommendations and searches. We propose an approach of detecting such frauds by analyzing click behaviors of users in CSS. We evaluate the effectiveness of the proposed approach on a real-world clickstream dataset.

  • A Joint Interference Suppression and Multiuser Detection Scheme Based on Eigendecomposition for Three-Cell Multiple Relay Systems

    Ahmet Ihsan CANBOLAT  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/10
      Vol:
    E100-B No:10
      Page(s):
    1939-1945

    To suppress intercell interference for three-cell half-duplex relay systems, joint interference suppression and multiuser detection (MUD) schemes that estimate weight coefficients by the recursive least-squares (RLS) algorithm have been proposed but show much worse bit error rate (BER) performance than maximum likelihood detection (MLD). To improve the BER performance, this paper proposes a joint interference suppression and MUD scheme that estimates the weight coefficients by eigenvalue decomposition. The proposed scheme carries the same advantages as the conventional RLS based schemes; it does not need channel state information (CSI) feedback while incurring much less amount of computational complexity than MLD. In addition, it needs to know only two out of three preambles used in the system. Computer simulations of orthogonal frequency-division multiplexing (OFDM) transmission under three-cell and frequency selective fading conditions are conducted. It is shown that the eigendecomposition-based scheme overwhelmingly outperforms the conventional RLS-based scheme although requiring higher computational complexity.

  • Doc-Trace: Tracing Secret Documents in Cloud Computing via Steganographic Marking

    Sang-Hoon CHOI  Joobeom YUN  Ki-Woong PARK  

     
    LETTER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2373-2376

    The secret document leakage incidents have raised awareness for the need to better security mechanisms. A leading cause of the incidents has been due to accidental disclosure through via removable storage devices. As a remedy to the issue, many organizations have been employing private cloud platform or virtual desktop infrastructure (VDI) to prevent the leakage of the secret documents. In spite of the various security benefits of cloud-based infrastructure, there are still challenges to prevent the secret document leakage incidents. In this paper, we present a novel scheme, called Doc-Trace, to provide an end-to-end traceability for the secret documents by inserting steganographic pattern into unused regions of the secret documents on private cloud and VDI platforms. We devise a computationally efficient storage scanning mechanism for providing end-to-end traceability for the storage scanning can be performed in an event-driven manner since a steganographic mark are encoded into a well-regulated offset address of the storage, which decrease the computation overhead drastically. To evaluate the feasibility of the proposed scheme, this work has been undertaken on a real cloud platform based on OpenStack.

  • Polarization-Reconfigurable Flat Transmitarray Based on Square Frame and Crossed Dipole Elements

    Yujie LIU  Yuehe GE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/04/07
      Vol:
    E100-B No:10
      Page(s):
    1904-1910

    A novel element is proposed for manipulating two orthogonally-polarized electromagnetic waves, resulting in a polarization-reconfigurable flat transmitarray. This element consists of four identical metallic patterns, including a square frame loaded with short stubs and an internal crossed dipole, which are printed on the two sides of three identical flat dielectric slabs, with no air gap among them. With a linearly-polarized (LP) feeder, the flat transmitarray can transform the LP incident wave into a circular, horizontal or vertical polarization wave in a convenient way. By rotating the LP feeder so that the polarization angle is 0°, 45°, 90° or 135°, the waves of linear horizontal, right-handed circular, linear vertical or left-handed circular polarization can be obtained alternately. Simulations and experiments are conducted to validate the performance. The measured axial ratio bandwidths for RHCP and LHCP transmitarrays are about 7.1% and 5.1%, respectively, the 3dB gain bandwidths are 16.19% and 22.4%, and the peak gains are 25.56dBi and 24.2dBi, respectively.

  • Re-Polarization Processing in Extended Polar Codes

    Yu-Ming HUANG  Hsie-Chia CHANG  Hsiang-Pang LI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/03/13
      Vol:
    E100-B No:10
      Page(s):
    1765-1777

    In this paper, extended polar codes based on re-polarization technique are proposed. The presented schemes extend a conventional polar code of length N to length N+q, which stand in contrast to known length-compatible schemes such as puncturing and shortening techniques that reduce the length from N to N-q. For certain specific lengths, the waterfall region performance of our extended polar code is superior to that of other length-compatible polar codes. It provides better reliability and reduces the management overhead in several storage devices and communications systems. In essence, extended polar codes are created by re-polarizing the q least reliable nonfrozen bit-channels with the help of q additional frozen bit-channels. It is proved that this re-polarization enhances the reliability of these bits. Moreover, the extended schemes can be not only modified to improve decoding performance, but generalized as a m-stage scheme to improve throughput significantly. With parallel operation, the throughput is improved around 2m-1 times when q is small. Compared to a shortened polar code with length 1536, the encoding and decoding complexities of an extended polar code are only 50% and 60.5%, respectively.

  • Fast Parameter Estimation for Polyphase P Codes Modulated Radar Signals

    Qi ZHANG  Pei WANG  Jun ZHU  Bin TANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:10
      Page(s):
    2162-2166

    A fast parameter estimation method with a coarse estimation and a fine estimation for polyphase P coded signals is proposed. For a received signal with N sampling points, the proposed method has an improved performance when the signal-to-noise ratio (SNR) is larger than 2dB and a lower computational complexity O(N logs N) compared with the latest time-frequency rate estimation method whose computational complexity is O(N2).

  • Positioning Error Reduction Techniques for Precision Navigation by Post-Processing

    Yu Min HWANG  Sun Yui LEE  Isaac SIM  Jin Young KIM  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:10
      Page(s):
    2158-2161

    With the increasing demand of Internet-of-Things applicability in various devices and location-based services (LBSs) with positioning capabilities, we proposed simple and effective post-processing techniques to reduce positioning error and provide more precise navigation to users in a pedestrian environment in this letter. The proposed positioning error reduction techniques (Technique 1-minimum range securement and bounce elimination, Technique 2-direction vector-based error correction) were studied considering low complexity and wide applicability to various types of positioning systems, e.g., global positioning system (GPS). Through the real field tests in urban areas, we have verified that an average positioning error of the proposed techniques is significantly decreased compared to that of a GPS-only environment.

  • Study on Effect of Company Rules and Regulations in Telework Involving Personal Devices

    Takashi HATASHIMA  Yasuhisa SAKAMOTO  

     
    LETTER

      Pubricized:
    2017/07/21
      Vol:
    E100-D No:10
      Page(s):
    2458-2461

    We surveyed employees who use personal devices for work. Residual analysis for cross-tabulation was carried out for three groups classified based on company rules and regulations established for mobile work. We show that the behavior of employees working with personal devices to process business data changes due to the presence or absence of the company rules and regulations.

  • Two Classes of Optimal Constant Composition Codes from Zero Difference Balanced Functions

    Bing LIU  Xia LI  Feng CHENG  

     
    LETTER-Coding Theory

      Vol:
    E100-A No:10
      Page(s):
    2183-2186

    Constant composition codes (CCCs) are a special class of constant-weight codes. They include permutation codes as a subclass. The study and constructions of CCCs with parameters meeting certain bounds have been an interesting research subject in coding theory. A bridge from zero difference balanced (ZDB) functions to CCCs with parameters meeting the Luo-Fu-Vinck-Chen bound has been established by Ding (IEEE Trans. Information Theory 54(12) (2008) 5766-5770). This provides a new approach for obtaining optimal CCCs. The objective of this letter is to construct two classes of ZDB functions whose parameters not covered in the literature, and then obtain two classes of optimal CCCs meeting the Luo-Fu-Vinck-Chen bound from these new ZDB functions.

  • The Invulnerability of Traffic Networks under New Attack Strategies

    Xin-Ling GUO  Zhe-Ming LU  Hui LI  

     
    PAPER-Graphs and Networks

      Vol:
    E100-A No:10
      Page(s):
    2106-2112

    In this paper, invulnerability and attack strategies are discussed for the undirected unweighted urban road networks and the directed weighted taxi networks of Beijing. Firstly, five new attack strategies, i.e., Initial All Degree (IAD), Initial All Strength (IAS), Recalculated Closeness (RC), Recalculated All Degree (RAD) and Recalculated All Strength (RAS) and five traditional attack strategies, i.e., Initial Degree (ID), Initial Betweenness (IB), Initial Closeness (IC), Recalculated Degree (RD) and Recalculated Betweenness (RB) are adopted to provoke the nodes failure. Secondly, we assess the impacts of these attack strategies using two invulnerability metrics, i.e., S (the relative size of the giant component) and E (the average network efficiency) through simulation experiments by MATLAB. Furthermore, we obtain some conclusions on the basis of the simulation results. Firstly, we discover that IB is more efficient than others for the undirected unweighted 5th ring Beijing road network based on S, and IB is more efficient than others at the beginning while ID is more efficient than IB at last based on E, while IAD causes a greater damage than IAS for the directed weighted 5th ring Beijing taxi network no matter with metrics S or E. Secondly, we find that dynamic attacks are more efficient than their corresponding static attacks, and RB is more destructive than others in all attack graphs while RAD is more destructive than RAS in all attack graphs. Moreover, we propose some suggestions to advance the reliability of the networks according to the simulation results. Additionally, we notice that the damage between ID (RD) and IAD (RAD) is similar due to the large proportion of two-way roads, and we realize that global measures should be employed to estimate the best attack strategy on the basis of that we find the best attack strategy changes with the nodes failure.

  • A Novel Component Ranking Method for Improving Software Reliability

    Lixing XUE  Decheng ZUO  Zhan ZHANG  Na WU  

     
    LETTER-Dependable Computing

      Pubricized:
    2017/07/24
      Vol:
    E100-D No:10
      Page(s):
    2653-2658

    This paper proposes a component ranking method to identify important components which have great impact on the system reliability. This method, which is opposite to an existing method, believes components which frequently invoke other components have more impact than others and employs component invocation structures and invocation frequencies for making important component ranking. It can strongly support for improving the reliability of software systems, especially large-scale systems. Extensive experiments are provided to validate this method and draw performance comparison.

  • Computational Complexity Reduction with Mel-Frequency Filterbank-Based Approach for Multichannel Speech Enhancement

    Jungpyo HONG  Sangbae JEONG  

     
    LETTER-Speech and Hearing

      Vol:
    E100-A No:10
      Page(s):
    2154-2157

    Multichannel speech enhancement systems (MSES') have been widely utilized for diverse types of speech interface applications. A state-of-the-art MSES primarily utilizes multichannel minima-controlled recursive averaging for noise estimations and a parameterized multichannel Wiener filter for noise reduction. Many MSES' are implemented in the frequency domain, but they are computationally burdensome due to the numerous complex matrix operations involved. In this paper, a novel MSES intended to reduce the computational complexity with improved performance is proposed. The proposed system is implemented in the mel-filterbank domain using a frequency-averaging technique. Through a performance evaluation, it is verified that the proposed mel-filterbank MSES achieves improvements in the perceptual speech quality with a reduced level of computation compared to a conventional MSES.

  • Undesired Radiation Suppression Technique for Distributed Array Antenna by Antenna Positioning and Delay Signal Processing

    Kouhei SUZUKI  Hideya SO  Daisuke GOTO  Yoshinori SUZUKI  Fumihiro YAMASHITA  Katsuya NAKAHIRA  Kiyoshi KOBAYASHI  Takatoshi SUGIYAMA  

     
    PAPER-Satellite Communications

      Pubricized:
    2017/03/01
      Vol:
    E100-B No:10
      Page(s):
    1959-1967

    This paper introduces distributed array antenna (DAA) systems that offer high antenna gain. A DAA consists of several small antennas with improved antenna gain. This paper proposes a technique that suppresses the off-axis undesired radiation and compensates the time delay by combining signal processing with optimization of array element positioning. It suppresses the undesired radiation by compensating the delay timing with high accuracy and deliberately generating the inter-symbol interference (ISI) in side-lobe directions. Computer simulations show its effective suppression of the equivalent isotropic radiated power (EIRP) pattern and its excellent BER performance.

  • A ROM Driving Circuit for RFID Tags Based on a-IGZO TFTs

    Shaolong LIN  Ruohe YAO  Fei LUO  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E100-C No:9
      Page(s):
    746-748

    This paper proposes a read-only memory driving circuit for RFID tags based on a-IGZO thin-film transistors. The circuit consists of a Johnson counter and monotype complementary gates. By utilizing complementary signals to drive a decoder based on monotype complementary gates, the propagation delay can be decreased and the redundant current can be reduced. The Johnson counter reduces the number of registers. The new circuit can effectively avoid glitch generation, and reduce circuit power consumption and delay.

  • Bit-Quad-Based Euler Number Computing

    Bin YAO  Lifeng HE  Shiying KANG  Xiao ZHAO  Yuyan CHAO  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2017/06/20
      Vol:
    E100-D No:9
      Page(s):
    2197-2204

    The Euler number of a binary image is an important topological property for pattern recognition, image analysis, and computer vision. A famous method for computing the Euler number of a binary image is by counting certain patterns of bit-quads in the image, which has been improved by scanning three rows once to process two bit-quads simultaneously. This paper studies the bit-quad-based Euler number computing problem. We show that for a bit-quad-based Euler number computing algorithm, with the increase of the number of bit-quads being processed simultaneously, on the one hand, the average number of pixels to be checked for processing a bit-quad will decrease in theory, and on the other hand, the length of the codes for implementing the algorithm will increase, which will make the algorithm less efficient in practice. Experimental results on various types of images demonstrated that scanning five rows once and processing four bit-quads simultaneously is the optimal tradeoff, and that the optimal bit-quad-based Euler number computing algorithm is more efficient than other Euler number computing algorithms.

  • Establishment of EMC Research in Japan and its Future Prospects Open Access

    Osamu FUJIWARA  

     
    INVITED SURVEY PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2017/03/27
      Vol:
    E100-B No:9
      Page(s):
    1623-1632

    Systematic research on electromagnetic compatibility (EMC) in Japan started in 1977 by the establishment of a technical committee on “environmental electromagnetic engineering” named EMCJ, which was founded both in the Institute of Electronics and Communication Engineers or the present IEICE (Institute of Electronics, Information and Communication Engineers) and in the Institute of Electrical Engineers of Japan or the IEEJ. The research activities have been continued as the basic field of interdisciplinary study to harmonize even in the electromagnetic (EM) environment where radio waves provide intolerable EM disturbances to electronic equipment and to that environment itself. The subjects and their outcomes which the EMCJ has dealt with during about 40 years from the EMCJ establishment include the evaluation of EM environment, EMC of electric and electronic equipment, and EMC of biological effects involving bioelectromagnetics and so on. In this paper, the establishment history and structure of the EMCJ are reviewed along with the change in activities, and topics of the technical reports presented at EMCJ meetings from 2006 to 2016 are surveyed. In addition, internationalization and its related campaign are presented in conjunction with the EMCJ research activities, and the status quo of the EMCJ under the IEICE is also discussed along with the prospects.

661-680hit(3945hit)