The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] OMP(3945hit)

801-820hit(3945hit)

  • A Novel Data-Aided Feedforward Timing Estimator for Burst-Mode Satellite Communications

    Kang WU  Tianheng XU  Yijun CHEN  Zhengmin ZHANG  Xuwen LIANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:10
      Page(s):
    1895-1899

    In this letter, we investigate the problem of feedforward timing estimation for burst-mode satellite communications. By analyzing the correlation property of frame header (FH) acquisition in the presence of sampling offset, a novel data-aided feedforward timing estimator that utilizes the correlation peaks for interpolating the fractional timing offset is proposed. Numerical results show that even under low signal-to-noise ratio (SNR) and small rolloff factor conditions, the proposed estimator can approach the modified Cramer-Rao bound (MCRB) closely. Furthermore, this estimator only requires two samples per symbol and can be implemented with low complexity with respect to conventional data-aided estimators.

  • HISTORY: An Efficient and Robust Algorithm for Noisy 1-Bit Compressed Sensing

    Biao SUN  Hui FENG  Xinxin XU  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/07/06
      Vol:
    E99-D No:10
      Page(s):
    2566-2573

    We consider the problem of sparse signal recovery from 1-bit measurements. Due to the noise present in the acquisition and transmission process, some quantized bits may be flipped to their opposite states. These sign flips may result in severe performance degradation. In this study, a novel algorithm, termed HISTORY, is proposed. It consists of Hamming support detection and coefficients recovery. The HISTORY algorithm has high recovery accuracy and is robust to strong measurement noise. Numerical results are provided to demonstrate the effectiveness and superiority of the proposed algorithm.

  • Illumination-Invariant Face Representation via Normalized Structural Information

    Wonjun KIM  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2016/06/21
      Vol:
    E99-D No:10
      Page(s):
    2661-2663

    A novel method for illumination-invariant face representation is presented based on the orthogonal decomposition of the local image structure. One important advantage of the proposed method is that image gradients and corresponding intensity values are simultaneously used with our decomposition procedure to preserve the original texture while yielding the illumination-invariant feature space. Experimental results demonstrate that the proposed method is effective for face recognition and verification even with diverse lighting conditions.

  • A 10-bit 6.8-GS/s Direct Digital Frequency Synthesizer Employing Complementary Dual-Phase Latch-Based Architecture

    Abdel MARTINEZ ALONSO  Masaya MIYAHARA  Akira MATSUZAWA  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1200-1210

    This paper introduces a novel Direct Digital Frequency Synthesizer based on Complementary Dual-Phase Latch-Based sequencing method. Compared to conventional Direct Digital Frequency Synthesizer using Flip-Flop as synchronizing element, the proposed architecture allows to double the data sampling rate while trading-off area and Power Efficiency. Digital domain modulations can be easily implemented by using a Direct Digital Frequency Synthesizer. However, due to performance limitations, CMOS-based applications have been almost exclusively restricted to VHF, UHF and L bands. This work aims to increase the operation speed and extend the applicability of this technology to Multi-band Multi-standard wireless systems operating up to 2.7 GHz. The design features a 24 bits pipelined Phase Accumulator and a 14x10 bits Phase to Amplitude Converter. The Phase to Amplitude Converter module is compressed by using Quarter Wave Symmetry technique and is entirely made up of combinational logic inserted into 12 Complementary Dual-Phase Latch-Based pipeline stages. The logic is represented in the form of Sum of Product terms obtained from a 14x10 bits sinusoidal Look-Up-Table. The proposed Direct Digital Frequency Synthesizer is designed and simulated based on 65nm CMOS standard-cell technology. A maximum data sampling rate of 6.8 GS/s is expected. Estimated Spurious Free Dynamic Range and Power Efficiency are 61 dBc and 22 mW/(GS/s) respectively.

  • Competitive Strategies for Evacuating from an Unknown Affected Area

    Qi WEI  Xuehou TAN  Bo JIANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/06/22
      Vol:
    E99-D No:10
      Page(s):
    2585-2590

    This article presents efficient strategies for evacuating from an unknown affected area in a plane. Evacuation is the process of movement away from a threat or hazard such as natural disasters. Consider that one or n(n ≥ 3) agents are lost in an unknown convex region P. The agents know neither the boundary information of P nor their positions. We seek competitive strategies that can evacuate the agent from P as quickly as possible. The performance of the strategy is measured by a competitive ratio of the evacuation path over the shortest path. We give a 13.812-competitive spiral strategy for one agent, and prove that it is optimal among all monotone and periodic strategies by showing a matching lower bound. Also, we give a new competitive strategy EES for n(n ≥ 3) agents and adjust it to be more efficient with the analysis of its performance.

  • A Wideband Asymmetric Digital Predistortion Architecture for 60 GHz Short Range Wireless Transmitters

    Kenji MIYANAGA  Masashi KOBAYASHI  Noriaki SAITO  Naganori SHIRAKATA  Koji TAKINAMI  

     
    PAPER

      Vol:
    E99-C No:10
      Page(s):
    1190-1199

    This paper presents a wideband digital predistortion (DPD) architecture suitable for wideband wireless systems, such as IEEE 802.11ad/WiGig, where low oversampling ratio of the digital-to-analog converter (DAC) is a bottleneck for available linearization bandwidth. In order to overcome the bandwidth limitation in the conventional DPD, the proposed DPD introduces a complex coefficient filter in the DPD signal processing, which enables it to achieve asymmetric linearization. This approach effectively suppresses one side of adjacent channel leakages with twice the bandwidth as compared to the conventional DPD. The concept is verified through system simulation and measurements. Using a scaled model of a 2 GHz RF carrier frequency, the measurement shows a 4.2 dB advantage over the conventional DPD in terms of adjacent channel leakage.

  • On the Three-Dimensional Channel Routing

    Satoshi TAYU  Toshihiko TAKAHASHI  Eita KOBAYASHI  Shuichi UENO  

     
    PAPER-Graphs and Networks

      Vol:
    E99-A No:10
      Page(s):
    1813-1821

    The 3-D channel routing is a fundamental problem on the physical design of 3-D integrated circuits. The 3-D channel is a 3-D grid G and the terminals are vertices of G located in the top and bottom layers. A net is a set of terminals to be connected. The objective of the 3-D channel routing problem is to connect the terminals in each net with a Steiner tree (wire) in G using as few layers as possible and as short wires as possible in such a way that wires for distinct nets are disjoint. This paper shows that the problem is intractable. We also show that a sparse set of ν 2-terminal nets can be routed in a 3-D channel with O(√ν) layers using wires of length O(√ν).

  • Speech Analysis Method Based on Source-Filter Model Using Multivariate Empirical Mode Decomposition

    Surasak BOONKLA  Masashi UNOKI  Stanislav S. MAKHANOV  Chai WUTIWIWATCHAI  

     
    PAPER-Speech and Hearing

      Vol:
    E99-A No:10
      Page(s):
    1762-1773

    We propose a speech analysis method based on the source-filter model using multivariate empirical mode decomposition (MEMD). The proposed method takes multiple adjacent frames of a speech signal into account by combining their log spectra into multivariate signals. The multivariate signals are then decomposed into intrinsic mode functions (IMFs). The IMFs are divided into two groups using the peak of the autocorrelation function (ACF) of an IMF. The first group characterized by a spectral fine structure is used to estimate the fundamental frequency F0 by using the ACF, whereas the second group characterized by the frequency response of the vocal-tract filter is used to estimate formant frequencies by using a peak picking technique. There are two advantages of using MEMD: (i) the variation in the number of IMFs is eliminated in contrast with single-frame based empirical mode decomposition and (ii) the common information of the adjacent frames aligns in the same order of IMFs because of the common mode alignment property of MEMD. These advantages make the analysis more accurate than with other methods. As opposed to the conventional linear prediction (LP) and cepstrum methods, which rely on the LP order and cut-off frequency, respectively, the proposed method automatically separates the glottal-source and vocal-tract filter. The results showed that the proposed method exhibits the highest accuracy of F0 estimation and correctly estimates the formant frequencies of the vocal-tract filter.

  • Channel Impulse Response Measurements-Based Location Estimation Using Kernel Principal Component Analysis

    Zhigang CHEN  Xiaolei ZHANG  Hussain KHURRAM  He HUANG  Guomei ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:10
      Page(s):
    1876-1880

    In this letter, a novel channel impulse response (CIR)-based fingerprinting positioning method using kernel principal component analysis (KPCA) has been proposed. During the offline phase of the proposed method, a survey is performed to collect all CIRs from access points, and a fingerprint database is constructed, which has vectors including CIR and physical location. During the online phase, KPCA is first employed to solve the nonlinearity and complexity in the CIR-position dependencies and extract the principal nonlinear features in CIRs, and support vector regression is then used to adaptively learn the regress function between the KPCA components and physical locations. In addition, the iterative narrowing-scope step is further used to refine the estimation. The performance comparison shows that the proposed method outperforms the traditional received signal strength based positioning methods.

  • Topics Arising from the WRC-15 with Respect to Satellite-Related Agenda Items Open Access

    Nobuyuki KAWAI  Satoshi IMATA  

     
    INVITED PAPER

      Vol:
    E99-B No:10
      Page(s):
    2113-2120

    Along with remarkable advancement of radiocommunication services including satellite services, the radio-frequency spectrum and geostationary-satellite orbit are getting congested. WRC-15 was held in November 2015 to study and implement efficient use of those natural resources. There were a number of satellite-related agenda items associated with frequency allocation, new usages of satellite communications and satellite regulatory issues. This paper overviews the outcome from these agenda items of WRC-15 as well as the agenda items for the next WRC (i.e. the WRC-19).

  • An Improved Privacy-Preserving Biometric Identification Scheme in Cloud Computing

    Kai HUANG  Ming XU  Shaojing FU  Yuchuan LUO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E99-A No:10
      Page(s):
    1891-1894

    In a previous work [1], Wang et al. proposed a privacy-preserving outsourcing scheme for biometric identification in cloud computing, namely CloudBI. The author claimed that it can resist against various known attacks. However, there exist serious security flaws in their scheme, and it can be completely broken through a small number of constructed identification requests. In this letter, we modify the encryption scheme and propose an improved version of the privacy-preserving biometric identification design which can resist such attack and can provide a much higher level of security.

  • Tardy Flow Scheduling in Data Center Networks

    Gyuyeong KIM  Wonjun LEE  

     
    LETTER-Information Network

      Pubricized:
    2016/05/25
      Vol:
    E99-D No:9
      Page(s):
    2400-2403

    Query response times are critical for cluster computing applications in data centers. In this letter, we argue that to optimize the network performance, we should consider the latency of the flows suffered loss, which are called tardy flows. We propose two tardy flow scheduling algorithms and show that our work offers significant performance gains through performance analysis and simulations.

  • Efficiency Analysis of SiC-MOSFET-Based Bidirectional Isolated DC/DC Converters

    Atsushi SAITO  Kenshiro SATO  Yuta TANIMOTO  Kai MATSUURA  Yutaka SASAKI  Mitiko MIURA-MATTAUSCH  Hans Jürgen MATTAUSCH  Yoshifumi ZOKA  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:9
      Page(s):
    1065-1070

    Circuit performance of SiC-MOSFET-based bidirectional isolated DC/DC converters is investigated based on circuit simulation with the physically accurate compact device model HiSIM_HV. It is demonstrated that the combined optimization of the MOSFETs Ron and of the inductances in the transformer can enable a conversion efficiency of more than 97%. The simulation study also verifies that the possible efficiency improvements are diminished due to the MOSFET-performance degradation, namely the carrier-mobility reduction, which results in a limitation of the possible Ron reduction. It is further demonstrated that an optimization of the MOSFET-operation conditions is important to utilize the resulting higher MOSFET performance for achieving additional converter efficiency improvements.

  • Complex Networks Clustering for Lower Power Scan Segmentation in At-Speed Testing

    Zhou JIANG  Guiming LUO  Kele SHEN  

     
    PAPER-Electronic Circuits

      Vol:
    E99-C No:9
      Page(s):
    1071-1079

    The scan segmentation method is an efficient solution to deal with the test power problem; However, the use of multiple capture cycles may cause capture violations, thereby leading to fault coverage loss. This issue is much more severe in at-speed testing. In this paper, two scan partition schemes based on complex networks clustering ara proposed to minimize the capture violations without increasing test-data volume and extra area overhead. In the partition process, we use a more accurate notion, spoiled nodes, instead of violation edges to analyse the dependency of flip-flops (ffs), and we use the shortest-path betweenness (SPB) method and the Laplacian-based graph partition method to find the best combination of these flip-flops. Beyond that, the proposed methods can use any given power-unaware set of patterns to test circuits, reducing both shift and capture power in at-speed testing. Extensive experiments have been performed on reference circuit ISCAS89 and IWLS2005 to verify the effectiveness of the proposed methods.

  • Weighted 4D-DCT Basis for Compressively Sampled Light Fields

    Yusuke MIYAGI  Keita TAKAHASHI  Toshiaki FUJII  

     
    PAPER

      Vol:
    E99-A No:9
      Page(s):
    1655-1664

    Light field data, which is composed of multi-view images, have various 3D applications. However, the cost of acquiring many images from slightly different viewpoints sometimes makes the use of light fields impractical. Here, compressive sensing is a new way to obtain the entire light field data from only a few camera shots instead of taking all the images individually. In paticular, the coded aperture/mask technique enables us to capture light field data in a compressive way through a single camera. A pixel value recorded by such a camera is a sum of the light rays that pass though different positions on the coded aperture/mask. The target light field can be reconstructed from the recorded pixel values by using prior information on the light field signal. As prior information, the current state of the art uses a dictionary (light field atoms) learned from training datasets. Meanwhile, it was reported that general bases such as those of the discrete cosine transform (DCT) are not suitable for efficiently representing prior information. In this study, however, we demonstrate that a 4D-DCT basis works surprisingly well when it is combined with a weighting scheme that considers the amplitude differences between DCT coefficients. Simulations using 18 light field datasets show the superiority of the weighted 4D-DCT basis to the learned dictionary. Furthermore, we analyzed a disparity-dependent property of the reconstructed data that is unique to light fields.

  • Sparse-Graph Codes and Peeling Decoder for Compressed Sensing

    Weijun ZENG  Huali WANG  Xiaofu WU  Hui TIAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E99-A No:9
      Page(s):
    1712-1716

    In this paper, we propose a compressed sensing scheme using sparse-graph codes and peeling decoder (SGPD). By using a mix method for construction of sensing matrices proposed by Pawar and Ramchandran, it generates local sensing matrices and implements sensing and signal recovery in an adaptive manner. Then, we show how to optimize the construction of local sensing matrices using the theory of sparse-graph codes. Like the existing compressed sensing schemes based on sparse-graph codes with “good” degree profile, SGPD requires only O(k) measurements to recover a k-sparse signal of dimension n in the noiseless setting. In the presence of noise, SGPD performs better than the existing compressed sensing schemes based on sparse-graph codes, still with a similar implementation cost. Furthermore, the average variable node degree for sensing matrices is empirically minimized for SGPD among various existing CS schemes, which can reduce the sensing computational complexity.

  • Deforming Pyramid: Multiscale Image Representation Using Pixel Deformation and Filters for Non-Equispaced Signals

    Saho YAGYU  Akie SAKIYAMA  Yuichi TANAKA  

     
    PAPER

      Vol:
    E99-A No:9
      Page(s):
    1646-1654

    We propose an edge-preserving multiscale image decomposition method using filters for non-equispaced signals. It is inspired by the domain transform, which is a high-speed edge-preserving smoothing method, and it can be used in many image processing applications. One of the disadvantages of the domain transform is sensitivity to noise. Even though the proposed method is based on non-equispaced filters similar to the domain transform, it is robust to noise since it employs a multiscale decomposition. It uses the Laplacian pyramid scheme to decompose an input signal into the piecewise-smooth components and detail components. We design the filters by using an optimization based on edge-preserving smoothing with a conversion of signal distances and filters taking into account the distances between signal intervals. In addition, we also propose construction methods of filters for non-equispaced signals by using arbitrary continuous filters or graph spectral filters in order that various filters can be accommodated by the proposed method. As expected, we find that, similar to state-of-the-art edge-preserving smoothing techniques, including the domain transform, our approach can be used in many applications. We evaluated its effectiveness in edge-preserving smoothing of noise-free and noisy images, detail enhancement, pencil drawing, and stylization.

  • Energy-Efficient Resource Allocation in Sensing-Based Spectrum Sharing for Cooperative Cognitive Radio Networks

    Wanming HAO  Shouyi YANG  Osamu MUTA  Haris GACANIN  Hiroshi FURUKAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1763-1771

    Energy-efficient resource allocation is considered in sensing-based spectrum sharing for cooperative cognitive radio networks (CCRNs). The secondary user first listens to the spectrum allocated to the primary user (PU) to detect the PU state and then initiates data transmission with two power levels based on the sensing decision (e.g., idle or busy). Under this model, the optimization problem of maximizing energy efficiency (EE) is formulated over the transmission power and sensing time subject to some practical limitations, such as the individual power constraint for secondary source and relay, the quality of service (QoS) for the secondary system, and effective protection for the PU. Given the complexity of this problem, two simplified versions (i.e., perfect and imperfect sensing cases) are studied in this paper. We transform the considered problem in fractional form into an equivalent optimization problem in subtractive form. Then, for perfect sensing, the Lagrange dual decomposition and iterative algorithm are applied to acquire the optimal power allocation policy; for imperfect sensing, an exhaustive search and iterative algorithm are proposed to obtain the optimal sensing time and corresponding power allocation strategy. Finally, numerical results show that the energy-efficient design greatly improves EE compared with the conventional spectrum-efficient design.

  • Privacy-Preserving Logistic Regression with Distributed Data Sources via Homomorphic Encryption

    Yoshinori AONO  Takuya HAYASHI  Le Trieu PHONG  Lihua WANG  

     
    PAPER

      Pubricized:
    2016/05/31
      Vol:
    E99-D No:8
      Page(s):
    2079-2089

    Logistic regression is a powerful machine learning tool to classify data. When dealing with sensitive or private data, cares are necessary. In this paper, we propose a secure system for privacy-protecting both the training and predicting data in logistic regression via homomorphic encryption. Perhaps surprisingly, despite the non-polynomial tasks of training and predicting in logistic regression, we show that only additively homomorphic encryption is needed to build our system. Indeed, we instantiate our system with Paillier, LWE-based, and ring-LWE-based encryption schemes, highlighting the merits and demerits of each instantiation. Besides examining the costs of computation and communication, we carefully test our system over real datasets to demonstrate its utility.

  • Linear Complexity of New Generalized Cyclotomic Sequences of Order Two with Odd Length

    Yu-qian ZHOU  Fei GAO  Jie ZHANG  Qian-yan WEN  Zu-ling CHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E99-A No:8
      Page(s):
    1639-1644

    Based on the generalized cyclotomy of order two with respect to n=p1e1+1p2e2+1…ptet+1, where p1, p2, …,pt are pairwise distinct odd primes and e1, e2,…, et are non-negative integers satisfying gcd (piei (pi-1), pjej (pj-1)) = 2 for all i ≠ j, this paper constructs a new family of generalized cyclotomic sequences of order two with length n and investigates their linear complexity. In the view of cascade theory, this paper obtains the linear complexity of a representative sequence.

801-820hit(3945hit)