The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] PU(3318hit)

2801-2820hit(3318hit)

  • The Shortest KLM Ti:Sapphire Laser Pulse Started by a Semiconductor Saturable Absorber Mirror (SESAM)

    Dirk H. SUTTER  Isabella D. JUNG  Nicolai MATUSCHEK  Francois MORIER-GENOUD  Franz X. KARTNER  Ursula KELLER  Volker SCHEUER  Markus TILSCH  Theo TSCHUDI  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    123-124

    This paper summarizes our recent efforts in modelocking Ti:sapphire lasers with semiconductor saturable absorber mirrors (SESAMs). We present the shortest optical pulses ever generated directly from a laser. The modelocking build-up time (T BU) of 60 µs is, to our knowledge, the shortest reported for a passively modelocked KLM laser to date.

  • Noncollinear Phase- and Group-Velocity Matching of Optical Parametric Amplifier for Ultrashort Pulse Generation

    Akira SHIRAKAWA  Takayoshi KOBAYASHI  

     
    PAPER-Femtosecond Pulse Compression, Amplification and Manipulation

      Vol:
    E81-C No:2
      Page(s):
    246-253

    An ultra-broadband optical parametric amplification can be attained by a noncollinear phase-matching. The group-velocity matching of the signal and idler reduces the signal-pulse width to 14-fs in an optical parametric amplifier based on a β-BaB2O4 crystal pumped by a second harmonics of a Ti: sapphire regenerative amplifier. This simple novel method shows the potential light source of a tunable sub-10-fs pulse in a visible region.

  • The Effect of Sampling-Pulse Pedestals on Temporal Resolution in Electro-Optic Sampling

    Makoto YAITA  Tadao NAGATSUMA  

     
    PAPER-Femtosecond Pulse Compression, Amplification and Manipulation

      Vol:
    E81-C No:2
      Page(s):
    254-259

    The effect of sampling-pulse pedestals, generated by pulse compression, on the temporal resolution in electro-optic (EO) sampling is studied both theoretically and experimentally. Analysis is made on how the pedestals degrade a measurement bandwidth and a temporal waveform. Based on the analysis, a practical guideline on the suppression of pedestals is also given. Gain-switched laser diode (LD) pulses adiabatically soliton-compressed using a dispersion decreasing fiber are used to confirm the theoretical results, and are successfully applied to high-temporal-resolution (>100 GHz) EO sampling measurements.

  • Ultrashort Optical Pulse Shaping by Electrooptic Synthesizer

    Dae-Sik KIM  Tattee KHAYIM  Akihiro MORIMOTO  Tetsuro KOBAYASHI  

     
    LETTER

      Vol:
    E81-C No:2
      Page(s):
    260-263

    We demonstrate an electrooptic synthesis technique for generating arbitrarily shaped short optical pulses from a CW narrow linewidth laser. For the optical pulse shaping, a large-amplitude electrooptic phase modulator is specially fabricated by employing the quasi-velocity-matching. The phase modulated light having sidebands as wide as 1 THz is separated and phase-only-controlled spatially by a liquid crystal modulator array. After composing the light by using a grating, nearly 1. 2 ps of Fourier-transform-limited optical pulses is obtained.

  • Design Theory of Ultra-Short Pulse Generation from Actively Mode-Locked Fiber Lasers

    Hideyuki SOTOBAYASHI  Kazuro KIKUCHI  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    201-207

    This paper analyzes pulse characteristics of actively mode-locked fiber lasers by including the group-velocity dispersion and the Kerr nonlinearity of the fiber, both of which have not been taken into account in the conventional theory of mode locking. We show that chirped sech pulses are generated from nonlinear and dispersive fiber lasers. By considering the stability of the laser, we also derive design rules for the generation of ultra-short pulses.

  • Very-High-Speed and Low Driving-Voltage Modulator Modules for a Short Optical Pulse Generation

    Koichi WAKITA  Kaoru YOSHINO  Akira HIRANO  Susumu KONDO  Yoshio NOGUCHI  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    175-179

    Optimization of InGaAs/InAlAs multiple quantum well structures for high-speed and low-driving modulation, as well as polarization insensitivity and low chirp, was investigated as a function of well thickness and strain magnitude. As a result, very short optical pulses with 4-6 ps was obtained using a low driving-voltage (<2. 0 Vpp) electroabsorption modulator module operating at a 40-GHz large signal modulation. Small chirp operation for low insertion loss (<8 dB from fiber-to-fiber) with prebias was also demonstrated and the product of the pulse width and the spectral width was estimated to be 0. 39 for a 5 ps pulse width that is nearly transform-limited.

  • Intracavity Dispersion Effects of a Regeneratively and Harmonically FM Mode-Locked Erbium-Doped Fiber Laser

    Eiji YOSHIDA  Kohichi TAMURA  Masataka NAKAZAWA  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    189-194

    The dependence of the output characteristics of a regeneratively and harmonically FM mode-locked erbium-doped fiber laser on intracavity dispersion have been investigated by changing the group velocity dispersion (GVD) of the fiber. It is shown that a stable pulse train can be obtained only when the GVD of the cavity is anomalous in the presence of self-phase modulation (SPM). The shortest pulse obtained was 2. 0 ps at a repetition rate of 10 GHz.

  • Ultrafast All-Optical Signal Processing with Mode-Locked Semiconductor Lasers

    Hisakazu KURITA  Ichiro OGURA  Hiroyuki YOKOYAMA  

     
    INVITED PAPER-Mode-locked and Gain-switched Laser Diodes and High speed EA Modulators

      Vol:
    E81-C No:2
      Page(s):
    129-139

    The novel application potential of mode-locked laser diodes (MLLDs) in ultrafast optical signal processing in addition to coherent optical pulse generation is described. As the most fundamental function of MLLDs, we show that the generation of ultrashort (2 ps) coherent optical pulses with low timing jitter (<0. 5 ps) at precisely controlled wavelength and repetition frequency can be achieved by employing a rigid module configuration for an external-cavity MLLD. We then discuss new aspects of MLLDs which are functions of ultrafast all-optical signal processing such as optical clock extraction and optical gating. All-optical clock extraction is based on the timing synchronization of MLLD output to the injected optical data pulse. When the passive mode-locking frequency of an MLLD is very close to the fundamental clock pulse frequency of optical data, the former frequency is pulled into the latter frequency by optical data injection. We show that same-frequency and subharmonic-frequency optical clock pulses can successfully be extracted from optical data pulses at bit rates of up to 80 Gbit/s with very simple configurations and very low excess timing jitter (<0. 1 ps). On the other hand, optical gating is due to absorption saturation and the following picosecond absorption recovery in a saturable absorber (SA) in an MLLD structure incorporating optical gate-pulse amplification. Here, MLLDs are anti-reflection coated and used as traveling wave devices instead of laser oscillators, and small saturation energy (<1 pJ) and ultrafast recovery time (<8 ps) are demonstrated. By combining all these MLLD functions, we successfully demonstrated an experiment with 40- to 10-Gbit/s all-optical demultiplexing processing.

  • A Tunable Femtosecond Modelocked Semiconductor Laser for Applications in OTDM-Systems

    Reinhold LUDWIG  Stefan DIEZ  Armin EHRHARDT  Lothar KULLER  Wilhelm PIEPER  Hans G. WEBER  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    140-145

    In this paper, we describe the properties of an external cavity modelocked semiconductor laser with a tunability of wavelength, pulse width and repetition rate. This modelocked laser generates optical pulses with pulse widths down to 180 fs and with repetition rates up to 14 GHz in a 120 nm wavelength range near 1. 55 µm or 1. 3 µm. The generated pulses are close to the transform limit and are therefore suitable for very high speed communication systems. In addition to the tunability, this pulse source is a compact and mechanically stable device. We report on two applications of this pulse source in optical time division multiplexing experiments. In the first example the modelocked laser is used as an all-optical clock recovery. In the second example the modelocked laser was used to characterize an interferometric switch by pump-probe experiments.

  • Highly Stable, Actively Mode-Locked Er-Doped Fiber Laser Utilizing Relaxation Oscillation as Detuning Monitor

    Hidehiko TAKARA  Satoki KAWANISHI  Masatoshi SARUWATARI  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    213-220

    We investigate the relaxation oscillation characteristics of an actively mode-locked fiber laser and a novel stabilizing method of the laser theoretically and experimentally. The stabilizing method controls cavity length to suppress the rf power of the relaxation oscillation frequency of the laser output, and can directly monitor the stability of the laser to ensure the most stable operation. With this method, the rf power ratio between mode-locking frequency and the background noise can be kept to more than 70 dB, and highly stable transform-limited pulse generation is achieved. Bit-error-free operation at 6. 3 GHz over 10 hours is successfully demonstrated. The stability of the center wavelength of the laser output and the required accuracy of cavity control for high-speed laser operation are also discussed.

  • Stretched-Pulse Generation and Propagation

    David J. JONES  Hermann A. HAUS  Lynn E. NELSON  Erich P. IPPEN  

     
    INVITED PAPER-Mode-locked Fiber Lasers

      Vol:
    E81-C No:2
      Page(s):
    180-188

    In this paper we review the stretched-pulse principle and discuss its inherent advantages for ultrashort pulse generation and transmission. An analytic theory of the stretched-pulse fiber laser is presented and shown to be in good agreement with experimental results. An extension of the stretched-pulse theory is applied to both fiber lasers and dispersion-allocated soliton transmission and then compared to numerical results. We also discuss the design and operation of an environmentally stable stretched-pulse fiber laser.

  • Femtosecond Technology in Japan

    Hiroyoshi YAJIMA  Takeshi KAMIYA  

     
    INVITED PAPER-Femtosecond Strategy

      Vol:
    E81-C No:2
      Page(s):
    95-102

    This paper reviews the prospects for "femtosecond technology" which will provide an innovative and fundamentally new industrial technology based on ultrafast electronics and quantum optics occurring in the femtosecond time domain. The outline of the femtosecond technology project sponsored by the Ministry of International Trade and Industry (MITI) is also reviewed.

  • Comparative Evaluation of Photonic ATM Switch Architectures

    Yoshihiro NAKAHIRA  Hideki SUNAHARA  Yuji OIE  

     
    PAPER-Advanced technologies for ATM system

      Vol:
    E81-B No:2
      Page(s):
    473-481

    In this paper, we discuss configurations of photonic ATM (Asynchronous Transfer Mode) switches and their advantages in terms of the number of optical switching devices to be implemented on the system, the number of wavelengths, throughput, broadcast function etc. In particular, we focus on photonic ATM switch architectures which can be built in the near future; that is, with presently available optical and electrical devices. For example, we assume the optical devices such as optical gate switches with 40 dB on/off ratio. In this context, we evaluate 17 types of photonic ATM switches; they are 6 types of input buffer type switches, 6 types of output buffer type switches, 4 types of shared buffer switches, and 1 proposed type. From our evaluation, for cell switching, wavelength division switching technologies are desirable compared with space division switching technologies in the sense that the former enables us to build a photonic ATM switch with the less number of optical gate switches. Furthermore, we propose a switch architecture equipped with optical delay line buffers on outputs and electric buffers on inputs. We show that our switch architecture is superior in the number of required optical gate switch elements under the given conditions.

  • A Theoretical Analysis of Quantum Noise in Semiconductor Lasers Operating with Self-Sustained Pulsation

    Minoru YAMADA  

     
    PAPER-Quantum Electronics

      Vol:
    E81-C No:2
      Page(s):
    290-298

    The semiconductor lasers operating with self-sustained pulsation are under developing to be lasers which are less disturbed by the optical feedback from a surface of optical disk. Structures setting saturable absorbing regions utilizing the multi-layer configuration become popularly used for giving stronger pulsation. However, the quantum (intensity) noise in these lasers tends to be enhanced. The ridge stripe structure, of which almost self-sustained pulsation lasers consist, seems to give a leak current flowing along plane of the cladding region. Such leak current also increases the quantum noise. In this paper, theoretical calculations of operating characteristics, such as the self-sustained pulsation, the optical output, the quantum noise as well as the transverse filed profile, are theoretically analyzed by including the above mentioned several phenomena.

  • Passively Mode-Locked Micromechanically-Tunable Semiconductor Lasers

    Yoshitada KATAGIRI  Atsushi TAKADA  Shigendo NISHI  Hiroshi ABE  Yuji UENISHI  Shinji NAGAOKA  

     
    PAPER

      Vol:
    E81-C No:2
      Page(s):
    151-159

    We propose a mechanically tunable passively mode-locked semiconductor laser with a high repetition rate using a simple configuration with a moving mirror located very close to a laser facet. This scheme is demonstrated for the first time by a novel micromechanical laser consisting of an InGaAsP/InP multisegment laser with a monolithic moving micro-mirror driven by an electrostatic comb structure. The main advantage of this laser is the capability of generating high-quality mode-locked pulses stabilized by a phase-locked loop (PLL) with low residual phase noise in a wide repetition-rate tuning range. This paper describes the basic concept and tuning performances utilizing the micromechanical passively mode-locked laser in 22-GHz fundamental mode-locking and in its second-harmonic mode-locking.

  • Improvement of Operation Reliability at Room Temperature for a Single Electron Pump

    Kouichirou YAMAMURA  Yoshiyuki SUDA  

     
    PAPER

      Vol:
    E81-C No:1
      Page(s):
    16-20

    We have studied the methods to operate single electron circuits with high reliability at room temperature. By simulation, we have numerically analyzed the error mechanisms of the room-temperature operation of a 2-gate electron pump as a fundamental single electron element circuit. We have found from the results that under the room temperature condition where the ratio of the electrostatic energy to the thermal energy for a transition electron is not so large, the minimum operation error probability is obtained at the specific gate sweep time when the circuit is operated with ramp-waveform control voltages. The analyses indicate that in the shorter sweep time range, the error probability increases because the gate voltage has changed before the significant electron transition occurs, and that in the longer sweep time range, the error probability also increases due to undesired-single-transition events. The optimum sweep time is estimated statically with the relationship between desired- and undesired-single-transition rates as a function of control gate voltages. Using the optimum condition, the operation reliability is expected to be improved by a factor of 100. This estimation method has been also confirmed by the time-dependent Monte-Carlo simulation.

  • A Polynomial-Time Algorithm for Checking the Inclusion for Real-Time Deterministic Restricted One-Counter Automata Which Accept by Accept Mode

    Ken HIGUCHI  Mitsuo WAKATSUKI  Etsuji TOMITA  

     
    PAPER-Automata,Languages and Theory of Computing

      Vol:
    E81-D No:1
      Page(s):
    1-11

    A deterministic pushdown automaton (dpda) having just one stack symbol is called a deterministic restricted one-counter automaton (droca). A deterministic one-counter automaton (doca) is a dpda having only one stack symbol, with the exception of a bottom-of-stack marker. The class of languages accepted by droca's which accept by final state is a proper subclass of the class of languages accepted by doca's. Valiant has proved the decidability of the equivalence problem for doca's and the undecidability of the inclusion problem for doca's. Thus the decidability of the equivalence problem for droca's is obvious. In this paper, we evaluate the upper bound of the length of the shortest input string (shortest witness) that disproves the inclusion for a pair of real-time droca's which accept by accept mode, and present a direct branching algorithm for checking the inclusion for a pair of languages accepted by these droca's. Then we show that the worst-case time complexity of our algorithm is polynomial in the size of these droca's.

  • An Efficient Causal Multicast Algorithm for Distributed System

    Ik Hyeon JANG  Jung Wan CHO  Hyunsoo YOON  

     
    PAPER-Computer Systems

      Vol:
    E81-D No:1
      Page(s):
    27-36

    Though causal order of message delivery simplifies the design and development of distributed applications, the overhead of enforcing it is not negligible. We claim that a causal order algorithm which does not send any redundant information is efficient in the sense of communication overhead. We characterize and classify the redundant information into four categories: information regarding just delivered, already delivered, just replaced, and already replaced messages. We propose an efficient causal multicast algorithm which prevents propagation of these redundant information. Our algorithm sends less amount of control information needed to ensure causal order than other existing algorithms and can also be applied to systems whose communication channels are not FIFO. Since our algorithm's communication overhead increases relatively slowly as the number of processes increases, it shows good scalability feature. The potential of our algorithm is shown by simulation study.

  • On Strategies for Allocating Replicas of Mobile Databases

    Budiarto  Kaname HARUMOTO  Masahiko TSUKAMOTO  Shojiro NISHIO  Tetsuya TAKINE  

     
    PAPER-Databases

      Vol:
    E81-D No:1
      Page(s):
    37-46

    Mobile databases will play an important role in mobile computing environment, to provide data storing and data retrieval functionalities which are needed by most applications. In mobile computing environment, the wireless communication poses some problems, which require us to minimize its use. Replication is a database technique that is commonly used to fulfill the requirement in minimizing network usage. In this paper, we propose two replica allocation strategies, called primary-copy tracking replica allocation (PTRA) and user majority replica allocation (UMRA), which are better suited to the mobile computing environment. Their proposals are intended to cope with cost performance issues in data replication due to user mobility in mobile computing environment. To investigate their effectiveness, we provide access cost analysis and comparison on these strategies and the static replica allocation (SRA) strategy. We show that our proposed strategies outperform the SRA strategy when user mobility (inter-cell movement) is relatively low as compared with data access rate.

  • Feature Space Design for Statistical Image Recognition with Image Screening

    Koichi ARIMURA  Norihiro HAGITA  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E81-D No:1
      Page(s):
    88-93

    This paper proposes a design method of feature spaces in a two-stage image recognition method that improves the recognition accuracy and efficiency in statistical image recognition. The two stages are (1) image screening and (2) image recognition. Statistical image recognition methods require a lot of calculations for spatially matching between subimages and reference patterns of the specified objects to be detected in input images. Our image screening method is effective in lowering the calculation load and improving recognition accuracy. This method selects a candidate set of subimages similar to those in the object class by using a lower dimensional feature vector, while rejecting the rest. Since a set of selected subimages is recognized by using a higher dimensional feature vector, overall recognition efficiency is improved. The classifier for recognition is designed from the selected subimages and also improves recognition accuracy, since the selected subimages are less contaminated than the originals. Even when conventional recognition methods based on linear transformation algorithms, i. e. principal component analysis (PCA) and projection pursuit (PP), are applied to the recognition stage in our method, recognition accuracy and efficiency may be improved. A new criterion, called a screening criterion, for measuring overall efficiency and accuracy of image recognition is introduced to efficiently design the feature spaces of image screening and recognition. The feature space for image screening are empirically designed subject to taking the lower number of dimensions for the feature space referred to as LS and the larger value of the screening criterion. Then, the recognition feature space which number of dimensions is referred to as LR is designed under the condition LSLR. The two detection tasks were conducted in order to examine the performance of image screening. One task is to detect the eye- and-mouth-areas in a face image and the other is to detect the text-area in a document image. The experimental results demonstrate that image screening for these two tasks improves both recognition accuracy and throughput when compared to the conventional one-stage recognition method.

2801-2820hit(3318hit)