The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

2781-2800hit(6809hit)

  • Frequency-Domain Equalization with Iterative Block Noise-Prediction for Single-Carrier Systems

    Ang FENG  Qinye YIN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:8
      Page(s):
    2747-2750

    In this letter, we propose a novel frequency-domain equalizer (FDE) for single-carrier systems characterized by severe inter-symbol interference (ISI) channels; it consists of a linear FDE and an iterative block noise-predictor (IBNP). Unlike the FDE with time-domain noise predictor (FDE-NP), the proposed scheme allows the feedback equalizer being an uncausal filter, and performs the noise prediction in an iterative manner. For this reason, FDE-IBNP can remove both precursor and postcursor ISI, and alleviate the impact of error-propagation. Besides, our scheme has lower computational complexity than the present iterative block equalizers.

  • Impact of Carrier Frequency Offset on Received SNR in Dual-Hop OFDM Systems with a Fixed Relay

    In-Ho LEE  Dongwoo KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:8
      Page(s):
    2755-2758

    In this letter, we present the impact of carrier frequency offset (CFO) in dual-hop orthogonal frequency division multiplexing (OFDM) systems with a fixed relay for frequency-selective fading channels. Approximate expressions of the average signal-to-noise ratios (SNRs) for both downlink and uplink are obtained and validated by simulations. It is shown that dual-hop systems have slightly worse average SNR degradation than single-hop systems. We also show that the average SNR degradation due to the CFO varies according to the gap between average received SNRs for the first and the second hop.

  • Extension of the Algorithm to Compute H Norm of a Parametric System

    Takuya KITAMOTO  

     
    PAPER-Systems and Control

      Vol:
    E92-A No:8
      Page(s):
    2036-2045

    Let G(s)=C(sI - A)-1B+D be a given system where entries of A,B,C,D are polynomials in a parameter k. Then H∞ norm || G(s) ||∞ of G(s) is a function of k, and [9] presents an algorithm to express 1/(||G(s) ||∞)2 as a root of a bivariate polynomial, assuming feedthrough term D to be zero. This paper extends the algorithm in two ways: The first extension is the form of the function to be expressed. The extended algorithm can treat, not only H∞ norm, but also functions that appear in the celebrated KYP Lemma. The other extension is the range of the frequency. While H∞ norm considers the supremum of the maximum singular value of G(i ω) for the infinite range 0 ≤ω ≤ ∞ of ω, the extended algorithm treats the norm for the finite frequency range ω ≤ ω ≤ ω- (ω, ω- ∈ R ∪ ∞). Those two extensions allow the algorithm to be applied to wider area of control problems. We give illustrative numerical examples where we apply the extended algorithm to the computation of the frequency-restricted norm, i.e., the supremum of the maximum singular value of G(i ω) (ω- ≤ ω ≤ ω-).

  • Quaternary Sequences with Good Autocorrelation Constructed by Gray Mapping

    Ji-Woong JANG  Sang-Hyo KIM  

     
    LETTER-Information Theory

      Vol:
    E92-A No:8
      Page(s):
    2139-2140

    A quaternary sequence is constructed by Gray mapping of a binary sequence with even period and its shift. The autocorrelation of the new quaternary sequence is the same as that of the binary sequence employed. Quaternary sequences with the maximum autocorrelation 2 can be obtained by the construction for period N≡ 2 ( mod 4).

  • Performance Evaluation of MIMO-UWB Systems Using Measured Propagation Data and Proposal of Timing Control Scheme in LOS Environments

    Masaki TAKANASHI  Toshihiko NISHIMURA  Yasutaka OGAWA  Takeo OHGANE  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:8
      Page(s):
    2698-2707

    Ultrawide-band impulse radio (UWB-IR) technology and multiple-input multiple-output (MIMO) systems have attracted interest regarding their use in next-generation high-speed radio communication. We have studied the use of MIMO ultrawide-band (MIMO-UWB) systems to enable higher-speed radio communication. We used frequency-domain equalization based on the minimum mean square error criterion (MMSE-FDE) to reduce intersymbol interference (ISI) and co-channel interference (CCI) in MIMO-UWB systems. Because UWB systems are expected to be used for short-range wireless communication, MIMO-UWB systems will usually operate in line-of-sight (LOS) environments and direct waves will be received at the receiver side. Direct waves have high power and cause high correlations between antennas in such environments. Thus, it is thought that direct waves will adversely affect the performance of spatial filtering and equalization techniques used to enhance signal detection. To examine the feasibility of MIMO-UWB systems, we conducted MIMO-UWB system propagation measurements in LOS environments. From the measurements, we found that the arrival time of direct waves from different transmitting antennas depends on the MIMO configuration. Because we can obtain high power from the direct waves, direct wave reception is critical for maximizing transmission performance. In this paper, we present our measurement results, and propose a way to improve performance using a method of transmit (Tx) and receive (Rx) timing control. We evaluate the bit error rate (BER) performance for this form of timing control using measured channel data.

  • Study on Optimization of Electromagnetic Relay's Reaction Torque Characteristics Based on Adjusted Parameters

    Guofu ZHAI  Qiya WANG  Wanbin REN  

     
    PAPER-Relacys & Switches

      Vol:
    E92-C No:8
      Page(s):
    1023-1027

    The cooperative characteristics of electromagnetic relay's attraction torque and reaction torque are the key property to ensure its reliability, and it is important to attain better cooperative characteristics by analyzing and optimizing relay's electromagnetic system and mechanical system. From the standpoint of changing reaction torque of mechanical system, in this paper, adjusted parameters (armature's maximum angular displacement αarm_max, initial return spring's force Finiti_return_spring, normally closed (NC) contacts' force FNC_contacts, contacts' gap δgap, and normally opened (NO) contacts' over travel δNO_contacts) were adopted as design variables, and objective function was provided for with the purpose of increasing breaking velocities of both NC contacts and NO contacts. Finally, genetic algorithm (GA) was used to attain optimization of the objective function. Accuracy of calculation for the relay's dynamic characteristics was verified by experiment.

  • Error-Trellis Construction for Convolutional Codes Using Shifted Error/Syndrome-Subsequences

    Masato TAJIMA  Koji OKINO  Takashi MIYAGOSHI  

     
    PAPER-Coding Theory

      Vol:
    E92-A No:8
      Page(s):
    2086-2096

    In this paper, we extend the conventional error-trellis construction for convolutional codes to the case where a given check matrix H(D) has a factor Dl in some column (row). In the first case, there is a possibility that the size of the state space can be reduced using shifted error-subsequences, whereas in the second case, the size of the state space can be reduced using shifted syndrome-subsequences. The construction presented in this paper is based on the adjoint-obvious realization of the corresponding syndrome former HT(D). In the case where all the columns and rows of H(D) are delay free, the proposed construction is reduced to the conventional one of Schalkwijk et al. We also show that the proposed construction can equally realize the state-space reduction shown by Ariel et al. Moreover, we clarify the difference between their construction and that of ours using examples.

  • Fuzzy-Based Path Selection Method for Improving the Detection of False Reports in Sensor Networks

    Hae Young LEE  Tae Ho CHO  

     
    LETTER-Computation and Computational Models

      Vol:
    E92-D No:8
      Page(s):
    1574-1576

    This paper presents a fuzzy-based path selection method for improving the security level, in which each cluster chooses paths based on the detection power of false data and energy efficiency.

  • Fretting in Electrical/Electronic Connections: A Review Open Access

    Milenko BRAUNOVIC  

     
    INVITED PAPER

      Vol:
    E92-C No:8
      Page(s):
    982-991

    Basic features of fretting and factors affecting its deleterious effects on the performance of electrical/electronic connection were reviewed. It was shown that although the fretting cannot be eliminated completely, its deleterious effects can be substantially reduced by lubrication and also connection design.

  • Experimental Research of Arc Behavior in Liquid Metal for Current Limiting Application

    Yiying LIU  Mingzhe RONG  Yi WU  Chenxi PAN  Hong LIU  Shijie YU  

     
    PAPER-Arc Discharge & Contact Phenomena

      Vol:
    E92-C No:8
      Page(s):
    1008-1012

    The liquid metal current limiter (LMCL) is a possible alternative to limit the short current of power system due to its special merits. This paper is devoted to the investigation of the arc behavior in liquid metal GaInSn for current limiting application. Firstly, the arc evolution including arc initiation, arc expansion and arc extinguish is observed through an experimental device. The resistance of arc and the self healing property of liquid metal are described. Subsequently, the arc erosion on electrodes is presented with its causes analyzed. Finally, the arc characteristics with the influence of rise rate of prospective current and channel diameter are discussed in details.

  • Integrated Lithium Niobate Mach-Zehnder Interferometers for Advanced Modulation Formats Open Access

    Tetsuya KAWANISHI  Takahide SAKAMOTO  Akito CHIBA  

     
    INVITED PAPER

      Vol:
    E92-C No:7
      Page(s):
    915-921

    We present recent progress of high-speed Mach-Zehnder modulator technologies for advanced modulation formats. Multi-level quadrature amplitude modulation signal can be synthesized by using parallel Mach-Zehnder modulators. We can generate complicated multi-level optical signals from binary data streams, where binary modulated signals are vectorially summed in optical circuits. Frequency response of each Mach-Zehnder interferometer is also very important to achieve high-speed signals. We can enhance the bandwidth of the response, with thin substrate. 87 Gbaud modulation was demonstrated with a dual-parallel Mach-Zehnder modulator.

  • A General-Purpose Path Generation Method Using Genetic Algorithms

    Jun INAGAKI  Toshitada MIZUNO  Tomoaki SHIRAKAWA  Tetsuo SHIMONO  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E92-D No:7
      Page(s):
    1503-1506

    A method using genetic algorithms for path generation have been proposed; however, this method is limited to particular applications, and there are limitations on the types of paths that can be represented. This paper therefore proposes a path generation method that is applicable to more general-purpose applications compared to previous methods based on a new design of the genotype used in the genetic algorithm.

  • An Efficient Algorithm for Sliding Window-Based Weighted Frequent Pattern Mining over Data Streams

    Chowdhury Farhan AHMED  Syed Khairuzzaman TANBEER  Byeong-Soo JEONG  Young-Koo LEE  

     
    PAPER

      Vol:
    E92-D No:7
      Page(s):
    1369-1381

    Traditional frequent pattern mining algorithms do not consider different semantic significances (weights) of the items. By considering different weights of the items, weighted frequent pattern (WFP) mining becomes an important research issue in data mining and knowledge discovery area. However, the existing state-of-the-art WFP mining algorithms consider all the data from the very beginning of a database to discover the resultant weighted frequent patterns. Therefore, their approaches may not be suitable for the large-scale data environment such as data streams where the volume of data is huge and unbounded. Moreover, they cannot extract the recent change of knowledge in a data stream adaptively by considering the old information which may not be interesting in the current time period. Another major limitation of the existing algorithms is to scan a database multiple times for finding the resultant weighted frequent patterns. In this paper, we propose a novel large-scale algorithm WFPMDS (Weighted Frequent Pattern Mining over Data Streams) for sliding window-based WFP mining over data streams. By using a single scan of data stream, the WFPMDS algorithm can discover important knowledge from the recent data elements. Extensive performance analyses show that our proposed algorithm is very efficient for sliding window-based WFP mining over data streams.

  • New Perfect Polyphase Sequences and Mutually Orthogonal ZCZ Polyphase Sequence Sets

    Fanxin ZENG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E92-A No:7
      Page(s):
    1731-1736

    In communication systems, ZCZ sequences and perfect sequences play important roles in removing multiple-access interference (MAI) and synchronization, respectively. Based on an uncorrelated polyphase base sequence set, a novel construction method, which can produce mutually orthogonal (MO) ZCZ polyphase sequence (PS) sets and perfect PSs, is presented. The obtained ZCZ PSs of each set are of ideal periodic cross-correlation functions (PCCFs), in other words, the PCCFs between such two different sequences vanishes, and the sequences between different sets are orthogonal. On the other hand, the proposed perfect PSs include Frank perfect PSs as a special case and the family size of the former is quite larger than that of the latter.

  • Performability Modeling for Software System with Performance Degradation and Reliability Growth

    Koichi TOKUNO  Shigeru YAMADA  

     
    PAPER

      Vol:
    E92-A No:7
      Page(s):
    1563-1571

    In this paper, we discuss software performability evaluation considering the real-time property; this is defined as the attribute that the system can complete the task within the stipulated response time limit. We assume that the software system has two operational states from the viewpoint of the end users: one is operating with the desirable performance level according to specification and the other is with degraded performance level. The dynamic software reliability growth process with performance degradation is described by the extended Markovian software reliability model with imperfect debugging. Assuming that the software system can process the multiple tasks simultaneously and that the arrival process of the tasks follows a nonhomogeneous Poisson process, we analyze the distribution of the number of tasks whose processes can be completed within the processing time limit with the infinite server queueing model. We derive several software performability measures considering the real-time property; these are given as the functions of time and the number of debugging activities. Finally, we illustrate several numerical examples of the measures to investigate the impact of consideration of the performance degradation on the system performability evaluation.

  • A Cyber-Attack Detection Model Based on Multivariate Analyses

    Yuto SAKAI  Koichiro RINSAKA  Tadashi DOHI  

     
    PAPER

      Vol:
    E92-A No:7
      Page(s):
    1585-1592

    In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.

  • Low-Complexity SLM and PTS Schemes for PAPR Reduction in OFDM Systems

    Chin-Liang WANG  Yuan OUYANG  Ming-Yen HSU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2420-2425

    One major drawback of orthogonal frequency-division multiplexing is the high peak-to-average power ratio (PAPR) of the output signal. The selected mapping (SLM) and partial transmit sequences (PTS) methods are two promising techniques for PAPR reduction. However, to generate a set of candidate signals, these techniques need a bank of inverse fast Fourier transforms (IFFT's) and thus require high computational complexity. In this paper, we propose two low-complexity multiplication-free conversion processes to replace the IFFT's in the SLM method, where each conversion process for an N-point IFFT involves only 3N complex additions. Using these proposed conversions, we develop several new SLM schemes and a combined SLM & PTS method, in which at least half of the IFFT blocks are reduced. Computer simulation results show that, compared to the conventional methods, these new schemes have approximately the same PAPR reduction performance under the same number of candidate signals for transmission selection.

  • A Novel Spreading Code Design for E-UTRA Uplink Control Channel and Its Performance

    Seigo NAKAO  Tomohumi TAKATA  Masaru FUKUOKA  Daichi IMAMURA  Katsuhiko HIRAMATSU  Kazuyuki MIYA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2433-2441

    Hybrid automatic repeat request (HARQ) is employed for the Evolved Universal Terrestrial Radio Access (E-UTRA) downlink. Each user equipment (UE) sends its ACK/NACK corresponding to the downlink data reception to the base station via a physical uplink control channel (PUCCH). The ACK/NACK signals from the UE are first code spread by the cyclic shift (CS) sequences, and then code spread again by the orthogonal cover (OC) sequences. The ACK/NACK signals from each UE are multiplexed by means of code division multiple access (CDMA), however, it is difficult for the conventional PUCCH code design to satisfy the required bit error rate (BER) of 10-3 [1] in fast-fading environments because of inter-code interference (ICI) among the OC sequences. Therefore, resource management of PUCCH is required depending on the mobility of the UEs to maximize the performance of the ACK/NACK signals and the capacity of PUCCH simultaneously. In this paper, we propose a novel code design for PUCCH, which can suppress the effects of ICI among the OC sequences, and thus can simplify the resource management of PUCCH. The simulation evaluations confirm that the proposed code design can significantly improve the performance of the ACK/NACK signals via PUCCH in fast-fading environments, and any complicated resource management based on the mobility of the UEs are not necessary.

  • Hybrid Two-Stage Decision-Feedback Equalization for Single-Carrier Multiple-Input Multiple-Output Systems

    Ang FENG  Qinye YIN  Jiancun FAN  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2503-2506

    A single-carrier multiple-input multiple-output (MIMO) system with frequency-selective channels suffers from the inter-symbol interference (ISI) and the co-channel interference (CCI). To eliminate both type of interference, we propose in this letter a hybrid two-stage decision-feedback equalizer (HTS-DFE), which performs the frequency-domain equalization (FDE) in the first stage and the layered serial interference-cancellation (SIC) in the second stage. Since the decision-feedback (DF) or noise-prediction (NP) architecture can be employed in FDE or SIC, the proposed equalizer actually can have four variations that achieve the same mean square error (MSE) under the assumption of perfect feedback. Further, we combine HTS-DFE with the decoded decision-feedback (DDF) scheme to mitigate the error-propagation encountered in the practice. Simulation results confirm that the proposed HTS-DFE can outperform the existing equalizers significantly.

  • Threshold-Based OSIC Detection Algorithm for Per-Antenna-Coded TIMO-OFDM Systems

    Xinzheng WANG  Ming CHEN  Pengcheng ZHU  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:7
      Page(s):
    2512-2515

    Threshold-based ordered successive interference cancellation (OSIC) detection algorithm is proposed for per-antenna-coded (PAC) two-input multiple-output (TIMO) orthogonal frequency division multiplexing (OFDM) systems. Successive interference cancellation (SIC) is performed selectively according to channel conditions. Compared with the conventional OSIC algorithm, the proposed algorithm reduces the complexity significantly with only a slight performance degradation.

2781-2800hit(6809hit)