The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

2701-2720hit(6809hit)

  • A 48 Cycles/MB H.264/AVC Deblocking Filter Architecture for Ultra High Definition Applications

    Dajiang ZHOU  Jinjia ZHOU  Jiayi ZHU  Satoshi GOTO  

     
    PAPER-Embedded, Real-Time and Reconfigurable Systems

      Vol:
    E92-A No:12
      Page(s):
    3203-3210

    In this paper, a highly parallel deblocking filter architecture for H.264/AVC is proposed to process one macroblock in 48 clock cycles and give real-time support to QFHD@60 fps sequences at less than 100 MHz. 4 edge filters organized in 2 groups for simultaneously processing vertical and horizontal edges are applied in this architecture to enhance its throughput. While parallelism increases, pipeline hazards arise owing to the latency of edge filters and data dependency of deblocking algorithm. To solve this problem, a zig-zag processing schedule is proposed to eliminate the pipeline bubbles. Data path of the architecture is then derived according to the processing schedule and optimized through data flow merging, so as to minimize the cost of logic and internal buffer. Meanwhile, the architecture's data input rate is designed to be identical to its throughput, while the transmission order of input data can also match the zig-zag processing schedule. Therefore no intercommunication buffer is required between the deblocking filter and its previous component for speed matching or data reordering. As a result, only one 2464 two-port SRAM as internal buffer is required in this design. When synthesized with SMIC 130 nm process, the architecture costs a gate count of 30.2 k, which is competitive considering its high performance.

  • Frequency-Domain Equalization for Coherent Optical Single-Carrier Transmission Systems

    Koichi ISHIHARA  Takayuki KOBAYASHI  Riichi KUDO  Yasushi TAKATORI  Akihide SANO  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E92-B No:12
      Page(s):
    3736-3743

    In this paper, we use frequency-domain equalization (FDE) to create coherent optical single-carrier (CO-SC) transmission systems that are very tolerant of chromatic dispersion (CD) and polarization mode dispersion (PMD). The efficient transmission of a 25-Gb/s NRZ-QPSK signal by using the proposed FDE is demonstrated under severe CD and PMD conditions. We also discuss the principle of FDE and some techniques suitable for implementing CO-SC-FDE. The results show that a CO-SC-FDE system is very tolerant of CD and PMD and can achieve high transmission rates over single mode fiber without optical dispersion compensation.

  • Plane-Wave and Vector-Rotation Approximation Technique for Reducing Computational Complexity to Simulate MIMO Propagation Channel Using Ray-Tracing Open Access

    Wataru YAMADA  Naoki KITA  Takatoshi SUGIYAMA  Toshio NOJIMA  

     
    PAPER-Antennas and Propagation

      Vol:
    E92-B No:12
      Page(s):
    3850-3860

    This paper proposes new techniques to simulate a MIMO propagation channel using the ray-tracing method for the purpose of decreasing the computational complexity. These techniques simulate a MIMO propagation channel by substituting the propagation path between a particular combination of transmitter and receiver antennas for all combinations of transmitter and receiver antennas. The estimation accuracy calculated using the proposed techniques is evaluated based on comparison to the results calculated using imaging algorithms. The results show that the proposed techniques simulate a MIMO propagation channel with low computational complexity, and a high level of estimation accuracy is achieved using the proposed Vector-Rotation Approximation technique compared to that for the imaging algorithm.

  • Bandwidth Allocation for QoS Using Adaptive Modulation and Coding in IEEE 802.16 Networks

    Hyun-Wook JO  Jae-Han JEON  Jong-Tae LIM  

     
    LETTER-Network

      Vol:
    E92-B No:12
      Page(s):
    3919-3922

    In recent years, there have been many studies on integrating a number of heterogeneous wireless networks into one network by establishing standards like IEEE 802.16. For this purpose, the base station (BS) should allocate the appropriate bandwidth to each connection with a network scheduler. In wireless networks, the signal to noise ratio (SNR) changes with time due to many factors such as fading. Hence, we estimate the SNR based on the error rate reflecting wireless network condition. Using the estimated SNR, we propose a new time slot allocation algorithm so that the proposed algorithm guarantees the delay requirement and full link utilization.

  • Burst Error Recovery Method for LZSS Coding

    Masato KITAKAMI  Teruki KAWASAKI  

     
    PAPER-Dependable Computing

      Vol:
    E92-D No:12
      Page(s):
    2439-2444

    Since the compressed data, which are frequently used in computer systems and communication systems, are very sensitive to errors, several error recovery methods for data compression have been proposed. Error recovery method for LZ77 coding, one of the most popular universal data compression methods, has been proposed. This cannot be applied to LZSS coding, a variation of LZ77 coding, because its compressed data consist of variable-length codewords. This paper proposes a burst error recovery method for LZSS coding. The error sensitive part of the compressed data are encoded by unary coding and moved to the beginning of the compressed data. After these data, a synchronization sequence is inserted. By searching the synchronization sequence, errors in the error sensitive part are detected. The errors are recovered by using a copy of the part. Computer simulation says that the compression ratio of the proposed method is almost equal to that of LZ77 coding and that it has very high error recovery capability.

  • Constructions of Factorizable Multilevel Hadamard Matrices

    Shinya MATSUFUJI  Pingzhi FAN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E92-A No:12
      Page(s):
    3404-3406

    Factorization of Hadamard matrices can provide fast algorithm and facilitate efficient hardware realization. In this letter, constructions of factorizable multilevel Hadamard matrices, which can be considered as special case of unitary matrices, are inverstigated. In particular, a class of ternary Hadamard matrices, together with its application, is presented.

  • Performance Analysis of Complex CDMA Using Complex Chaotic Spreading Sequence with Constant Power

    Ryo TAKAHASHI  Ken UMENO  

     
    LETTER-Nonlinear Problems

      Vol:
    E92-A No:12
      Page(s):
    3394-3397

    A performance of the complex chaotic spreading sequences with constant power is investigated in a chip-synchronous complex CDMA with a complex scrambling. We estimate a signal-to-interference ratio (SIR) and a bit error rate (BER). An exact invariant measure of the complex chaotic spreading sequence can be obtained. Therefore, the SIR can be calculated analytically. The result can be used as one of the criteria for evaluating the performance of the complex CDMA using the chaotic spreading sequences.

  • A Wide Band VCO with Automatic Frequency, Gain, and Two-Step Amplitude Calibration Loop for DTV Tuner Application

    YoungGun PU  Kang-Yoon LEE  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:12
      Page(s):
    1496-1503

    This paper presents a wide tuning range VCO with an automatic frequency, gain, and two-step amplitude calibration loop for Digital TV (DTV) tuner applications. To cover the wide tuning range, the fully digital automatic frequency calibration (AFC) loop is used. In addition to the AFC loop, a two-step negative-Gm tuning loop is proposed to provide the optimum negative-Gm to the LC tank in a wide frequency range with a fine resolution. In the coarse negative-Gm tuning loop, the number of active negative-Gm cells is selected digitally based on the target frequency. In the fine negative-Gm tuning loop, the negative-Gm is tuned finely with the bias voltage of the VCO. Also, the digital VCO gain calibration scheme is proposed to compensate for the gain variation in a wide tuning range. The VCO tuning range is 2.6 GHz, from 1.7 GHz to 4.3 GHz, and the power consumption is 2 mA to 4 mA from a 1.8 V supply. The measured VCO phase noise is -120 dBc/Hz at 1 MHz offset.

  • Folksonomical P2P File Sharing Networks Using Vectorized KANSEI Information as Search Tags

    Kei OHNISHI  Kaori YOSHIDA  Yuji OIE  

     
    PAPER-Computation and Computational Models

      Vol:
    E92-D No:12
      Page(s):
    2402-2415

    We present the concept of folksonomical peer-to-peer (P2P) file sharing networks that allow participants (peers) to freely assign structured search tags to files. These networks are similar to folksonomies in the present Web from the point of view that users assign search tags to information distributed over a network. As a concrete example, we consider an unstructured P2P network using vectorized Kansei (human sensitivity) information as structured search tags for file search. Vectorized Kansei information as search tags indicates what participants feel about their files and is assigned by the participant to each of their files. A search query also has the same form of search tags and indicates what participants want to feel about files that they will eventually obtain. A method that enables file search using vectorized Kansei information is the Kansei query-forwarding method, which probabilistically propagates a search query to peers that are likely to hold more files having search tags that are similar to the query. The similarity between the search query and the search tags is measured in terms of their dot product. The simulation experiments examine if the Kansei query-forwarding method can provide equal search performance for all peers in a network in which only the Kansei information and the tendency with respect to file collection are different among all of the peers. The simulation results show that the Kansei query forwarding method and a random-walk-based query forwarding method, for comparison, work effectively in different situations and are complementary. Furthermore, the Kansei query forwarding method is shown, through simulations, to be superior to or equal to the random-walk based one in terms of search speed.

  • Delay Analysis and Optimization of Bandwidth Request under Unicast Polling in IEEE 802.16e over Gilbert-Elliot Error Channel

    Eunju HWANG  Kyung Jae KIM  Frank ROIJERS  Bong Dae CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3827-3835

    In the centralized polling mode in IEEE 802.16e, a base station (BS) polls mobile stations (MSs) for bandwidth reservation in one of three polling modes; unicast, multicast, or broadcast pollings. In unicast polling, the BS polls each individual MS to allow to transmit a bandwidth request packet. This paper presents an analytical model for the unicast polling of bandwidth request in IEEE 802.16e networks over Gilbert-Elliot error channel. We derive the probability distribution for the delay of bandwidth requests due to wireless transmission errors and find the loss probability of request packets due to finite retransmission attempts. By using the delay distribution and the loss probability, we optimize the number of polling slots within a frame and the maximum retransmission number while satisfying QoS on the total loss probability which combines two losses: packet loss due to the excess of maximum retransmission and delay outage loss due to the maximum tolerable delay bound. In addition, we obtain the utilization of polling slots, which is defined as the ratio of the number of polling slots used for the MS's successful transmission to the total number of polling slots used by the MS over a long run time. Analysis results are shown to well match with simulation results. Numerical results give examples of the optimal number of polling slots within a frame and the optimal maximum retransmission number depending on delay bounds, the number of MSs, and the channel conditions.

  • Semi Empirical Approach to the Charge Transport Characteristics of Molecular Junctions

    Aruna P. PRIYA  Preferencial C. KALA  John D. THIRUVADIGAL  

     
    PAPER-Fundamentals for Nanodevices

      Vol:
    E92-C No:12
      Page(s):
    1460-1463

    The idea of using molecules and molecular structures as functional electronic device, promises to substantially decrease the size and improve the performance of electronic devices. In this paper, nonequilibrium Green's function formalism (NEGF) combined with extended Huckel theory (EHT), a semiempirical approach is used to study the electron transport phenomenon in single molecular junction systems. Benzene diamine molecule is studied to investigate the bonding of amine group to gold electrodes and the electron transport across the junction. The results are compared with that of benzene dithiol molecule with thiol end groups. Furthermore, the influence of charging and torsion angle on the transport characteristics is emphasized.

  • Video-Quality Estimation Based on Reduced-Reference Model Employing Activity-Difference

    Toru YAMADA  Yoshihiro MIYAMOTO  Yuzo SENDA  Masahiro SERIZAWA  

     
    PAPER-Evaluation

      Vol:
    E92-A No:12
      Page(s):
    3284-3290

    This paper presents a Reduced-reference based video-quality estimation method suitable for individual end-user quality monitoring of IPTV services. With the proposed method, the activity values for individual given-size pixel blocks of an original video are transmitted to end-user terminals. At the end-user terminals, the video quality of a received video is estimated on the basis of the activity-difference between the original video and the received video. Psychovisual weightings and video-quality score adjustments for fatal degradations are applied to improve estimation accuracy. In addition, low-bit-rate transmission is achieved by using temporal sub-sampling and by transmitting only the lower six bits of each activity value. The proposed method achieves accurate video quality estimation using only low-bit-rate original video information (15 kbps for SDTV). The correlation coefficient between actual subjective video quality and estimated quality is 0.901 with 15 kbps side information. The proposed method does not need computationally demanding spatial and gain-and-offset registrations. Therefore, it is suitable for real-time video-quality monitoring in IPTV services.

  • Joint Adaptive M-QAM and Selection Combining in SVD-Based MIMO Systems

    Sang-Do LEE  Young-Chai KO  Jeong-Jae WON  Taehyun JEON  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:12
      Page(s):
    3950-3952

    In this paper, we propose a hybrid M-ary Quadrature Amplitude Modulation (M-QAM) transmission scheme that jointly uses discrete-rate adaptation and selection combining for singular value decomposition (SVD)-based multiple-input multiple-output (MIMO) systems, and derive exact closed-form expressions of the performance of the proposed scheme in terms of the average spectral efficiency and the outage probability.

  • Improved Vector Quantization Based Block Truncation Coding Using Template Matching and Lloyd Quantization

    Seung-Won JUNG  Yeo-Jin YOON  Hyeong-Min NAM  Sung-Jea KO  

     
    LETTER-Coding

      Vol:
    E92-A No:12
      Page(s):
    3369-3371

    Block truncation coding (BTC) is an efficient image compression algorithm that generates a constant output bit-rate. For color image compression, vector quantization (VQ) is exploited to improve the coding efficiency. In this letter, we propose an improved VQ based BTC (VQ-BTC) algorithm using template matching and Lloyd quantization (LQ). The experimental results show that the proposed method improves the PSNR by 0.9 dB in average compared to the conventional VQ-BTC algorithms.

  • Adaptive Traffic Route Control in QoS Provisioning for Cognitive Radio Technology with Heterogeneous Wireless Systems

    Toshiaki YAMAMOTO  Tetsuro UEDA  Sadao OBANA  

     
    PAPER-Protocols

      Vol:
    E92-B No:12
      Page(s):
    3683-3692

    As one of the dynamic spectrum access technologies, "cognitive radio technology," which aims to improve the spectrum efficiency, has been studied. In cognitive radio networks, each node recognizes radio conditions, and according to them, optimizes its wireless communication routes. Cognitive radio systems integrate the heterogeneous wireless systems not only by switching over them but also aggregating and utilizing them simultaneously. The adaptive control of switchover use and concurrent use of various wireless systems will offer a stable and flexible wireless communication. In this paper, we propose the adaptive traffic route control scheme that provides high quality of service (QoS) for cognitive radio technology, and examine the performance of the proposed scheme through the field trials and computer simulations. The results of field trials show that the adaptive route control according to the radio conditions improves the user IP throughput by more than 20% and reduce the one-way delay to less than 1/6 with the concurrent use of IEEE802.16 and IEEE802.11 wireless media. Moreover, the simulation results assuming hundreds of mobile terminals reveal that the number of users receiving the required QoS of voice over IP (VoIP) service and the total network throughput of FTP users increase by more than twice at the same time with the proposed algorithm. The proposed adaptive traffic route control scheme can enhance the performances of the cognitive radio technologies by providing the appropriate communication routes for various applications to satisfy their required QoS.

  • Adaptive Pre-FFT Equalizer with High-Precision Channel Estimator for ISI Channels

    Makoto YOSHIDA  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2669-2678

    We present an attractive approach for OFDM transmission using an adaptive pre-FFT equalizer, which can select ICI reduction mode according to channel condition, and a degenerated-inverse-matrix-based channel estimator (DIME), which uses a cyclic sinc-function matrix uniquely determined by transmitted subcarriers. In addition to simulation results, the proposed system with an adaptive pre-FFT equalizer and DIME has been laboratory tested by using a software defined radio (SDR)-based test bed. The simulation and experimental results demonstrated that the system at a rate of more than 100 Mbps can provide a bit error rate of less than 10-3 for a fast multi-path fading channel that has a moving velocity of more than 200 km/h with a delay spread of 1.9 µs (a maximum delay path of 7.3 µs) in the 5-GHz band.

  • Shift-Invariant Sparse Image Representations Using Tree-Structured Dictionaries

    Makoto NAKASHIZUKA  Hidenari NISHIURA  Youji IIGUNI  

     
    PAPER-Image Processing

      Vol:
    E92-A No:11
      Page(s):
    2809-2818

    In this study, we introduce shift-invariant sparse image representations using tree-structured dictionaries. Sparse coding is a generative signal model that approximates signals by the linear combinations of atoms in a dictionary. Since a sparsity penalty is introduced during signal approximation and dictionary learning, the dictionary represents the primal structures of the signals. Under the shift-invariance constraint, the dictionary comprises translated structuring elements (SEs). The computational cost and number of atoms in the dictionary increase along with the increasing number of SEs. In this paper, we propose an algorithm for shift-invariant sparse image representation, in which SEs are learnt with a tree-structured approach. By using a tree-structured dictionary, we can reduce the computational cost of the image decomposition to the logarithmic order of the number of SEs. We also present the results of our experiments on the SE learning and the use of our algorithm in image recovery applications.

  • A Novel Interference Cancellation Approach for Interleaved OFDMA Uplink System

    Ruiqin MIAO  Jun SUN  Lin GUI  Jian XIONG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:11
      Page(s):
    3432-3438

    In this paper, the issue of carrier frequency offset (CFO) compensation in interleaved orthogonal frequency division multiple access (OFDMA) uplink system is investigated. To mitigate the effect of multiple access interference (MAI) caused by CFOs of different users, a new parallel interference cancellation (PIC) compensation algorithm is proposed. This scheme uses minimum mean square error (MMSE) criterion to obtain the estimation of interference users, then circular convolutions are employed to restore MAI and compensate CFO. To tackle the complexity problem of circular convolutions, an efficient MAI restoration and cancellation method is developed. Simulations illustrate the good performance and low computational complexity of the proposed algorithm.

  • A Prototype Modem for Hyper-Multipoint Data Gathering SATCOM Systems --- A Group Modem Applicable to Arbitrarily and Dynamically Assigned FDMA Signals ---

    Kiyoshi KOBAYASHI  Fumihiro YAMASHITA  Jun-ichi ABE  Masazumi UEBA  

     
    PAPER

      Vol:
    E92-B No:11
      Page(s):
    3318-3325

    This paper presents a prototype group modem for a hyper-multipoint data gathering satellite communication system. It can handle arbitrarily and dynamically assigned FDMA signals by employing a novel FFT-type block demultiplexer/multiplexer. We clarify its configuration and operational principle. Experiments show that the developed modem offers excellent performance.

  • Two Enhanced Heuristic Algorithms for the Minimum Initial Marking Problem of Petri Nets

    Satoru OCHIIWA  Satoshi TAOKA  Masahiro YAMAUCHI  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2732-2744

    The minimum initial marking problem of Petri nets (MIM) is defined as follows: "Given a Petri net and a firing count vector X, find an initial marking M0, with the minimum total token number, for which there is a sequence δ of transitions such that each transition t appears exactly X(t) times in δ, the first transition is enabled at M0 and the rest can be fired one by one subsequently." In a production system like factory automation, economical distribution of initial resources, from which a schedule of job-processings is executable, can be formulated as MIM. AAD is known to produce best solutions among existing algorithms. Although solutions by AMIM+ is worse than those by AAD, it is known that AMIM+ is very fast. This paper proposes new heuristic algorithms AADO and AMDLO, improved versions of existing algorithms AAD and AMIM+, respectively. Sharpness of solutions or short CPU time is the main target of AADO or AMDLO, respectively. It is shown, based on computing experiment, that the average total number of tokens in initial markings by AADO is about 5.15% less than that by AAD, and the average CPU time by AADO is about 17.3% of that by AAD. AMDLO produces solutions that are slightly worse than those by AAD, while they are about 10.4% better than those by AMIM+. Although CPU time of AMDLO is about 180 times that of AMIM+, it is still fast: average CPU time of AMDLO is about 2.33% of that of AAD. Generally it is observed that solutions get worse as the sizes of input instances increase, and this is the case with AAD and AMIM+. This undesirable tendency is greatly improved in AADO and AMDLO.

2701-2720hit(6809hit)