The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Q(6809hit)

2961-2980hit(6809hit)

  • Analysis and Design of Sub-Threshold R-MOSFET Tunable Resistor

    Apisak WORAPISHET  Phanumas KHUMSAT  

     
    PAPER-Electronic Circuits

      Vol:
    E92-C No:1
      Page(s):
    135-143

    The sub-threshold R-MOSFET resistor structure which enables tuning range extension below the threshold voltage in the MOSFET with moderate to weak inversion operation is analyzed in detail. The principal operation of the sub-threshold resistor is briefly described. The analysis of its characteristic based on approximations of a general MOS equation valid for all regions is given along with discussion on design implication and consideration. Experiments and simulations are provided to validate the theoretical analysis and design, and to verify the feasibility at a supply voltage as low as 0.5 V using a low-threshold devices in a 1.8-V 0.18 µm CMOS process.

  • Quantum Interference Crossover-Based Clonal Selection Algorithm and Its Application to Traveling Salesman Problem

    Hongwei DAI  Yu YANG  Cunhua LI  Jun SHI  Shangce GAO  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E92-D No:1
      Page(s):
    78-85

    Clonal Selection Algorithm (CSA), based on the clonal selection theory proposed by Burnet, has gained much attention and wide applications during the last decade. However, the proliferation process in the case of immune cells is asexual. That is, there is no information exchange during different immune cells. As a result the traditional CSA is often not satisfactory and is easy to be trapped in local optima so as to be premature convergence. To solve such a problem, inspired by the quantum interference mechanics, an improved quantum crossover operator is introduced and embedded in the traditional CSA. Simulation results based on the traveling salesman problems (TSP) have demonstrated the effectiveness of the quantum crossover-based Clonal Selection Algorithm.

  • An Accurate Approach to Large-Scale IP Traffic Matrix Estimation

    Dingde JIANG  Guangmin HU  

     
    LETTER-Network

      Vol:
    E92-B No:1
      Page(s):
    322-325

    This letter proposes a novel method of large-scale IP traffic matrix (TM) estimation, called algebraic reconstruction technique inference (ARTI), which is based on the partial flow measurement and Fratar model. In contrast to previous methods, ARTI can accurately capture the spatio-temporal correlations of TM. Moreover, ARTI is computationally simple since it uses the algebraic reconstruction technique. We use the real data from the Abilene network to validate ARTI. Simulation results show that ARTI can accurately estimate large-scale IP TM and track its dynamics.

  • Cluster System Capacity Improvement by Transferring Load in Virtual Node Distance Order

    Shigero SASAKI  Atsuhiro TANAKA  

     
    PAPER-Computer Systems

      Vol:
    E92-D No:1
      Page(s):
    1-9

    Cluster systems are prevalent infrastructures for offering e-services because of their cost-effectiveness. The objective of our research is to enhance their cost-effectiveness by reducing the minimum number of nodes to meet a given target performance. To achieve the objective, we propose a load balancing algorithm, the Nearest Underloaded algorithm (N algorithm). The N algorithm aims at quick solution of load imbalance caused by request departures while also preventing herd effect. The performance index in our evaluation is the xth percentile capacity which we define based on throughputs and the xth percentile response times. We measured the capacity of 8- to 16-node cluster systems under the N algorithm and existing Least-Loaded (LL) algorithms, which dispatch or transfer requests to the least-loaded node. We found that the N algorithm could achieve larger capacity or could achieve the target capacity with fewer nodes than LL algorithms could.

  • Throughput Efficiency of Go-Back-N ARQ Protocol on Parallel Multi-Channel with Burst Errors

    Kenichi NAGAOKA  Chun-Xiang CHEN  Masaharu KOMATSU  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E91-B No:12
      Page(s):
    3994-3997

    In this paper, we investigate the throughput efficiency of the Go-Back-N ARQ protocol on parallel multiple channels with burst errors. We assume that packet errors occur according to a two-state Markov chain on each channel. The effect of the decay factor of the Markov chain on throughput efficiency is evaluated based on the results of numerical analysis.

  • Zero Correlation Distribution of ZCZ Sequences Obtained from a Perfect Sequence and a Unitary Matrix

    Satoshi UEHARA  Shuichi JONO  Yasuyuki NOGAMI  

     
    LETTER-Sequence

      Vol:
    E91-A No:12
      Page(s):
    3745-3748

    A class of zero-correlation zone (ZCZ) sequences constructed by the recursive procedure from a perfect sequence and a unitary matrix was proposed by Torii, Nakamura, and Suehiro [1] . In the reference [1] , three parameters, s.t., the sequence length, the family size and the length of the ZCZ, were evaluated for a general estimate of the performance of the ZCZ sequences. In this letter, we give more detailed distributions of that correlation values are zero on their ZCZ sequence sets.

  • Detection for Space-Time Block Coding over Time-Selective Fading Channels

    Donghun YU  Jae Hong LEE  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E91-B No:12
      Page(s):
    4050-4053

    A detector for space-time block coding is proposed to combat time-selective fading. To suppress both noise and interference, a minimum mean square error (MMSE) based detector is introduced for space-time block coding. It is shown by simulations that the proposed detector outperforms the conventional detectors when the channel is time-selective fading.

  • Proof Score Approach to Verification of Liveness Properties

    Kazuhiro OGATA  Kokichi FUTATSUGI  

     
    PAPER-Fundamentals of Software and Theory of Programs

      Vol:
    E91-D No:12
      Page(s):
    2804-2817

    Proofs written in algebraic specification languages are called proof scores. The proof score approach to design verification is attractive because it provides a flexible way to prove that designs for systems satisfy properties. Thus far, however, the approach has focused on safety properties. In this paper, we describe a way to verify that designs for systems satisfy liveness properties with the approach. A mutual exclusion protocol using a queue is used as an example. We describe the design verification and explain how it is verified that the protocol satisfies the lockout freedom property.

  • Highly Efficient Comparator Design Automation for TIQ Flash A/D Converter

    Insoo KIM  Jincheol YOO  JongSoo KIM  Kyusun CHOI  

     
    PAPER-Physical Level Design

      Vol:
    E91-A No:12
      Page(s):
    3415-3422

    Threshold Inverter Quantization (TIQ) technique has been gaining its importance in high speed flash A/D converters due to its fast data conversion speed. It eliminates the need of resistor ladders for reference voltages generation which requires substantial power consumption. The key to TIQ comparators design is to generate 2n - 1 different sized TIQ comparators for an n-bit A/D converter. This paper presents a highly efficient TIQ comparator design methodology based on an analytical model as well as SPICE simulation experimental model. One can find any sets of TIQ comparators efficiently using the proposed method. A 6-bit TIQ A/D converter has been designed in a 0.18 µm standard CMOS technology using the proposed method, and compared to the previous measured results in order to verify the proposed methodology.

  • A Parallel Method to Extract Critical Areas of Net Pairs for Diagnosing Bridge Faults

    Keiichi SUEMITSU  Toshiaki ITO  Toshiki KANAMOTO  Masayuki TERAI  Satoshi KOTANI  Shigeo SAWADA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E91-A No:12
      Page(s):
    3524-3530

    This paper proposes a new parallel method of producing the adjacent net pair list from the LSI layouts, which is run on workstations connected with the network. The pair list contains pairs of adjacent nets and the probability of a bridging fault between them, and is used in fault diagnosis of LSIs. The proposed method partitions into regions each mask layer of the LSI layout, produces a pair list corresponding to each region in parallel and merges them into the entire pair list. It yields the accurate results, because it considers the faults between two wires containing different adjacent regions. The experimental results show that the proposed method has greatly reduced the processing time from more than 60 hrs. to 3 hrs. in case of 42M-gate LSIs.

  • On Almost Perfect Nonlinear Functions

    Claude CARLET  

     
    INVITED PAPER

      Vol:
    E91-A No:12
      Page(s):
    3665-3678

    A function F:F2n F2n is almost perfect nonlinear (APN) if, for every a 0, b in F2n, the equation F(x)+F(x+a)=b has at most two solutions in F2n. When used as an S-box in a block cipher, it contributes optimally to the resistance to differential cryptanalysis. The function F is almost bent (AB) if the minimum Hamming distance between all its component functions v F, v∈F2n {0} (where "" denotes any inner product in F2n ) and all affine Boolean functions on F2n takes the maximal value 2n-1-2. AB functions exist for n odd only and contribute optimally to the resistance to the linear cryptanalysis. Every AB function is APN, and in the n odd case, any quadratic APN function is AB. The APN and AB properties are preserved by affine equivalence: F F' if F'=A1 F A2, where A1,A2 are affine permutations. More generally, they are preserved by CCZ-equivalence, that is, affine equivalence of the graphs of F: {(x,F(xv)) | x∈ F2n} and of F'. Until recently, the only known constructions of APN and AB functions were CCZ-equivalent to power functions F(x)=xd over finite fields (F2n being identified with F2n and an inner product being x y=tr(xy) where tr is the trace function). Several recent infinite classes of APN functions have been proved CCZ-inequivalent to power functions. In this paper, we describe the state of the art in the domain and we also present original results. We indicate what are the most important open problems and make some new observations about them. Many results presented are from joint works with Lilya Budaghyan, Gregor Leander and Alexander Pott.

  • Generalized M-Ary Related-Prime Sequences with Low Correlation

    Yun Kyoung HAN  Kyeongcheol YANG  

     
    PAPER-Sequence

      Vol:
    E91-A No:12
      Page(s):
    3685-3690

    In this paper we introduce new M-ary sequences of length pq, called generalized M-ary related-prime sequences, where p and q are distinct odd primes, and M is a common divisor of p-1 and q-1. We show that their out-of-phase autocorrelation values are upper bounded by the maximum between q-p+1 and 5. We also construct a family of generalized M-ary related-prime sequences and show that the maximum correlation of the proposed sequence family is upper bounded by p+q-1.

  • A New Construction Method of Zero-Correlation Zone Sequences Based on Complete Complementary Codes

    Chenggao HAN  Takeshi HASHIMOTO  Naoki SUEHIRO  

     
    PAPER-Sequence

      Vol:
    E91-A No:12
      Page(s):
    3698-3702

    In approximately synchronous CDMA (AS-CDMA) systems, zero correlation zone (ZCZ) sequences are known as the sequences to eliminate co-channel and multi-path interferences. Therefore, numerous constructions of zero correlation zone (ZCZ) sequences have been introduced e.g. based on perfect sequences and complete complementary codes etc. However, the previous construction method which based on complete complementary code is lacking for merit figures when none of whose elements are zero. In this paper, a new construction method of ZCZ sequences based on complete complementary codes is proposed. By proposed method, non zero elements ZCZ sequences whose merit figure is greater than 1/2 are constructable.

  • A Clock Scheduling Algorithm for High-Throughput RSFQ Digital Circuits

    Koji OBATA  Kazuyoshi TAKAGI  Naofumi TAKAGI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:12
      Page(s):
    3772-3782

    An algorithm for clock scheduling of concurrent-flow clocking rapid single-flux-quantum (RSFQ) digital circuits is proposed. RSFQ circuit technology is an emerging technology of digital circuits. In concurrent-flow clocking RSFQ digital circuits, all logic gates are driven by clock pulses. Appropriate clock scheduling makes clock frequency of the circuits higher. Given a clock period, the proposed algorithm determines the arrival time of clock pulses and the delay that should be inserted. Experimental results show that inserted delay elements by the proposed algorithm are 59.0% fewer and the height of clock trees are 40.4% shorter on average than those by a straightforward algorithm. The proposed algorithm can also be used to minimize the clock period, thus obtaining 19.0% shorter clock periods on average.

  • DDMF: An Efficient Decision Diagram Structure for Design Verification of Quantum Circuits under a Practical Restriction

    Shigeru YAMASHITA  Shin-ichi MINATO  D. Michael MILLER  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:12
      Page(s):
    3793-3802

    Recently much attention has been paid to quantum circuit design to prepare for the future "quantum computation era." Like the conventional logic synthesis, it should be important to verify and analyze the functionalities of generated quantum circuits. For that purpose, we propose an efficient verification method for quantum circuits under a practical restriction. Thanks to the restriction, we can introduce an efficient verification scheme based on decision diagrams called Decision Diagrams for Matrix Functions (DDMFs). Then, we show analytically the advantages of our approach based on DDMFs over the previous verification techniques. In order to introduce DDMFs, we also introduce new concepts, quantum functions and matrix functions, which may also be interesting and useful on their own for designing quantum circuits.

  • An RFID-Based Manufacturing Control Framework for Loosely Coupled Distributed Manufacturing System Supporting Mass Customization

    Ruey-Shun CHEN  Yung-Shun TSAI  Arthur TU  

     
    PAPER-Office Information Systems

      Vol:
    E91-D No:12
      Page(s):
    2834-2845

    In this study we propose a manufacturing control framework based on radio-frequency identification (RFID) technology and a distributed information system to construct a mass-customization production process in a loosely coupled shop-floor control environment. On the basis of this framework, we developed RFID middleware and an integrated information system for tracking and controlling the manufacturing process flow. A bicycle manufacturer was used to demonstrate the prototype system. The findings of this study were that the proposed framework can improve the visibility and traceability of the manufacturing process as well as enhance process quality control and real-time production pedigree access. Using this framework, an enterprise can easily integrate an RFID-based system into its manufacturing environment to facilitate mass customization and a just-in-time production model.

  • Low-Complexity Post-FFT Fine Frequency Synchronization for OFDM

    Young-Hwan YOU  Sung-Jin KANG  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E91-A No:12
      Page(s):
    3840-3842

    In this letter, we suggest a simple way of implementing a post-FFT pilot-assisted sampling frequency offset and residual frequency offset estimator with reduced complexity in an orthogonal frequency division multiplexing (OFDM) system. In order to devise the low-complexity post-FFT frequency estimator, some modifications on the conventional estimator are highlighted with an emphasis on the selection of pilot subset.

  • Accuracy and Stability Enhancement of Hybrid-Domain MoM Solution for Volume Scattering Problems Using Legendre Expansion

    Amin SAEEDFAR  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Vol:
    E91-B No:12
      Page(s):
    4062-4066

    An alternative polynomial expansion for electromagnetic field estimation inside three-dimensional dielectric scatterers is presented in this article. In a continuation with the previous work of authors, the Tensor-Volume Integral Equation (TVIE) is solved by using the Galerkin-based moment method (MoM) consisting of a combination of entire-domain and sub-domain basis functions including three-dimensional polynomials. Instead of using trivial power polynomials, Legendre polynomials are adopted for electromagnetic fields expansion in this study. They have the advantage of being a set of orthogonal functions, which allows the use of high-order basis functions without introducing an ill-condition MoM matrix. The accuracy of such approach in MoM is verified by comparing its numerical results with that of exact analytical method such as Mie theory and conventional procedures in MoM. Besides, it is also confirmed that the condition number of the MoM matrix obtained with the proposed approach is lower than that of the previous approaches.

  • Some Upper Bounds on the Inverse Relative Dimension/Length Profile

    Peisheng WANG  Yuan LUO  A.J. Han VINCK  

     
    PAPER-Coding Theory

      Vol:
    E91-A No:12
      Page(s):
    3731-3737

    The generalized Hamming weight played an important role in coding theory. In the study of the wiretap channel of type II, the generalized Hamming weight was extended to a two-code format. Two equivalent concepts of the generalized Hamming weight hierarchy and its two-code format, are the inverse dimension/length profile (IDLP) and the inverse relative dimension/length profile (IRDLP), respectively. In this paper, the Singleton upper bound on the IRDLP is improved by using a quotient subcode set and a subset with respect to a generator matrix, respectively. If these new upper bounds on the IRDLP are achieved, in the corresponding coordinated two-party wire-tap channel of type II, the adversary cannot learn more from the illegitimate party.

  • A Tight Upper Bound on Online Buffer Management for Multi-Queue Switches with Bicodal Buffers

    Koji KOBAYASHI  Shuichi MIYAZAKI  Yasuo OKABE  

     
    PAPER-Algorithm Theory

      Vol:
    E91-D No:12
      Page(s):
    2757-2769

    The online buffer management problem formulates the problem of queuing policies of network switches supporting QoS (Quality of Service) guarantee. In this paper, we consider one of the most standard models, called multi-queue switches model. In this model, Albers et al. gave a lower bound , and Azar et al. gave an upper bound on the competitive ratio when m, the number of input ports, is large. They are tight, but there still remains a gap for small m. In this paper, we consider the case where m=2, namely, a switch is equipped with two ports, which is called a bicordal buffer model. We propose an online algorithm called Segmental Greedy Algorithm (SG) and show that its competitive ratio is at most ( 1.231), improving the previous upper bound by ( 1.286). This matches the lower bound given by Schmidt.

2961-2980hit(6809hit)