The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

41-60hit(2923hit)

  • Two Cascade Control Strategy of Generalized Electric Spring

    Xiaohu WANG  Yubin DUAN  Yi WEI  Xinyuan CHEN  Huang ZHUN  Chaohui ZHAO  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2023/06/05
      Vol:
    E106-B No:11
      Page(s):
    1102-1108

    With the gradually increase of the application of new energy in microgrids, Electric Spring (ES), as a new type of distributed compensation power electronic device has been widely studied. The Generalized Electric Spring (G-ES) is an improved topology, and the space limitation problem in the traditional topology is solved. Because of the mode of G-ES use in the power grid, a reasonable solution to the voltage loss of the critical section feeder is needed. In this paper, the voltage balance equation based on the feedforward compensation coefficient is established, and a two cascade control strategy based on the equation is studied. The first stage of the two cascade control strategy is to use communication means to realize the allocation of feedforward compensation coefficients, and the second stage is to use the coefficients to realize feedforward fixed angle control. Simulation analysis shows that the proposed control strategy does not affect the control accuracy of the critical load (CL), and effectively improves the operational range of the G-ES.

  • Numerical Derivation of Design Guidelines for Tightness and Shaking Amplitude of Vibrating Intrinsic Reverberation Chamber by Method of Moment

    Makoto HARA  Jianqing WANG  Frank LEFERINK  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2023/06/02
      Vol:
    E106-B No:11
      Page(s):
    1173-1181

    Vibrating intrinsic reverberation chamber is being used as an in-situ EMC test equipment for large and complex systems such as automobiles and aircrafts. In this paper, the stirring conditions, such as tightness and shaking amplitude of the walls, of a vibrating intrinsic reverberation chamber have been analyzed using the method of moments. From the viewpoint of quantitative evaluation of the flexible moving walls configuration, it was found that the random electromagnetic environment can be generated under the stirring conditions of loose configuration and a shaking amplitude more than one eighth of the wavelength at the test frequency above the lowest usable frequency.

  • User Scheduling and Clustering for Distributed Antenna Network Using Quantum Computing

    Keishi HANAKAGO  Ryo TAKAHASHI  Takahiro OHYAMA  Fumiyuki ADACHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1210-1218

    In this study, an overloaded large-scale distributed antenna network is considered, for which the number of active users is larger than that of antennas distributed in a base station coverage area (called a cell). To avoid overload, users in each cell are divided into multiple user groups, and, to reduce the computational complexity required for multi-user multiple-input and multiple-output (MU-MIMO), users in each user group are grouped into multiple user clusters so that cluster-wise distributed MU-MIMO can be performed in parallel in each user group. However, as the network size increases, conventional computational methods may not be able to solve combinatorial optimization problems, such as user scheduling and user clustering, which are required for performing cluster-wise distributed MU-MIMO in a finite amount of time. In this study, we apply quantum computing to solve the combinatorial optimization problems of user scheduling and clustering for an overloaded distributed antenna network and propose a quantum computing-based user scheduling and clustering method. The results of computer simulations indicate that as the technology of quantum computers and their related algorithms evolves in the future, the proposed method can realize large-scale dense wireless systems and realize real-time optimization with a short optimization execution cycle.

  • Silicon Photonic Optical Phased Array with Integrated Phase Monitors

    Shun TAKAHASHI  Taichiro FUKUI  Ryota TANOMURA  Kento KOMATSU  Yoshitaka TAGUCHI  Yasuyuki OZEKI  Yoshiaki NAKANO  Takuo TANEMURA  

     
    PAPER

      Pubricized:
    2023/05/25
      Vol:
    E106-C No:11
      Page(s):
    748-756

    The optical phased array (OPA) is an emerging non-mechanical device that enables high-speed beam steering by emitting precisely phase-controlled lightwaves from numerous optical antennas. In practice, however, it is challenging to drive all phase shifters on an OPA in a deterministic manner due to the inevitable fabrication-induced phase errors and crosstalk between the phase shifters. In this work, we fabricate a 16-element silicon photonic non-redundant OPA chip with integrated phase monitors and experimentally demonstrate accurate monitoring of the relative phases of light from each optical antenna. Under the beam steering condition, the optical phase retrieved from the on-chip phase monitors varies linearly with the steering angle, as theoretically expected.

  • A Multi-FPGA Implementation of FM-Index Based Genomic Pattern Search

    Ullah IMDAD  Akram BEN AHMED  Kazuei HIRONAKA  Kensuke IIZUKA  Hideharu AMANO  

     
    PAPER-Computer System

      Pubricized:
    2023/08/09
      Vol:
    E106-D No:11
      Page(s):
    1783-1795

    FPGA clusters that consist of multiple FPGA boards have been gaining interest in recent times. Massively parallel processing with a stand-alone heterogeneous FPGA cluster with SoC- style FPGAs and mid-scale FPGAs is promising with cost-performance benefit. Here, we propose such a heterogeneous FPGA cluster with FiC and M-KUBOS cluster. FiC consists of multiple boards, mounting middle scale Xilinx's FPGAs and DRAMs, which are tightly coupled with high-speed serial links. In addition, M-KUBOS boards are connected to FiC for ensuring high IO data transfer bandwidth. As an example of massively parallel processing, here we implement genomic pattern search. Next-generation sequencing (NGS) technology has revolutionized biological system related research by its high-speed, scalable and massive throughput. To analyze the genomic data, short read mapping technique is used where short Deoxyribonucleic acid (DNA) sequences are mapped relative to a known reference sequence. Although several pattern matching techniques are available, FM-index based pattern search is perfectly suitable for this task due to the fastest mapping from known indices. Since matching can be done in parallel for different data, the massively parallel computing which distributes data, executes in parallel and gathers the results can be applied. We also implement a data compression method where about 10 times reduction in data size is achieved. We found that a M-KUBOS board matches four FiC boards, and a system with six M-KUBOS boards and 24 FiC boards achieved 30 times faster than the software based implementation.

  • A 58-%-Lock-Range Divide-by-9 Injection-Locked Frequency Divider Using Harmonic-Control Technique

    Sangyeop LEE  Shuhei AMAKAWA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    BRIEF PAPER

      Pubricized:
    2023/04/06
      Vol:
    E106-C No:10
      Page(s):
    529-532

    This paper presents a divide-by-9 injection-locked frequency divider (ILFD). It can lock onto about 6-GHz input with a locking range of 3.23GHz (58%). The basic concept of the ILFD is based on employing self-gated multiple inputs into the multiple-stage ring oscillator. A wide lock range is also realized by adapting harmonic-control circuits, which can boost specific harmonics generated by mixing. The ILFD was fabricated using a 55-nm deeply depleted channel (DDC) CMOS process. It occupies an area of 0.0210mm2, and consumes a power of 14.4mW.

  • Nonvolatile Storage Cells Using FiCC for IoT Processors with Intermittent Operations

    Yuki ABE  Kazutoshi KOBAYASHI  Jun SHIOMI  Hiroyuki OCHI  

     
    PAPER

      Pubricized:
    2023/04/13
      Vol:
    E106-C No:10
      Page(s):
    546-555

    Energy harvesting has been widely investigated as a potential solution to supply power for Internet of Things (IoT) devices. Computing devices must operate intermittently rather than continuously, because harvested energy is unstable and some of IoT applications can be periodic. Therefore, processors for IoT devices with intermittent operation must feature a hibernation mode with zero-standby-power in addition to energy-efficient normal mode. In this paper, we describe the layout design and measurement results of a nonvolatile standard cell memory (NV-SCM) and nonvolatile flip-flops (NV-FF) with a nonvolatile memory using Fishbone-in-Cage Capacitor (FiCC) suitable for IoT processors with intermittent operations. They can be fabricated in any conventional CMOS process without any additional mask. NV-SCM and NV-FF are fabricated in a 180nm CMOS process technology. The area overhead by nonvolatility of a bit cell are 74% in NV-SCM and 29% in NV-FF, respectively. We confirmed full functionality of the NV-SCM and NV-FF. The nonvolatile system using proposed NV-SCM and NV-FF can reduce the energy consumption by 24.3% compared to the volatile system when hibernation/normal operation time ratio is 500 as shown in the simulation.

  • Kr-Plasma Sputtering for Pt Gate Electrode Deposition on MFSFET with 5 nm-Thick Ferroelectric Nondoped HfO2 Gate Insulator for Analog Memory Application

    Joong-Won SHIN  Masakazu TANUMA  Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2023/06/02
      Vol:
    E106-C No:10
      Page(s):
    581-587

    In this research, we investigated the threshold voltage (VTH) control by partial polarization of metal-ferroelectric-semiconductor field-effect transistors (MFSFETs) with 5 nm-thick nondoped HfO2 gate insulator utilizing Kr-plasma sputtering for Pt gate electrode deposition. The remnant polarization (2Pr) of 7.2 μC/cm2 was realized by Kr-plasma sputtering for Pt gate electrode deposition. The memory window (MW) of 0.58 V was realized by the pulse amplitude and width of -5/5 V, 100 ms. Furthermore, the VTH of MFSFET was controllable by program/erase (P/E) input pulse even with the pulse width below 100 ns which may be caused by the reduction of leakage current with decreasing plasma damage.

  • Local-to-Global Structure-Aware Transformer for Question Answering over Structured Knowledge

    Yingyao WANG  Han WANG  Chaoqun DUAN  Tiejun ZHAO  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/06/27
      Vol:
    E106-D No:10
      Page(s):
    1705-1714

    Question-answering tasks over structured knowledge (i.e., tables and graphs) require the ability to encode structural information. Traditional pre-trained language models trained on linear-chain natural language cannot be directly applied to encode tables and graphs. The existing methods adopt the pre-trained models in such tasks by flattening structured knowledge into sequences. However, the serialization operation will lead to the loss of the structural information of knowledge. To better employ pre-trained transformers for structured knowledge representation, we propose a novel structure-aware transformer (SATrans) that injects the local-to-global structural information of the knowledge into the mask of the different self-attention layers. Specifically, in the lower self-attention layers, SATrans focus on the local structural information of each knowledge token to learn a more robust representation of it. In the upper self-attention layers, SATrans further injects the global information of the structured knowledge to integrate the information among knowledge tokens. In this way, the SATrans can effectively learn the semantic representation and structural information from the knowledge sequence and the attention mask, respectively. We evaluate SATrans on the table fact verification task and the knowledge base question-answering task. Furthermore, we explore two methods to combine symbolic and linguistic reasoning for these tasks to solve the problem that the pre-trained models lack symbolic reasoning ability. The experiment results reveal that the methods consistently outperform strong baselines on the two benchmarks.

  • Computational Complexity of Allow Rule Ordering and Its Greedy Algorithm

    Takashi FUCHINO  Takashi HARADA  Ken TANAKA  Kenji MIKAWA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/03/20
      Vol:
    E106-A No:9
      Page(s):
    1111-1118

    Packet classification is used to determine the behavior of incoming packets in network devices according to defined rules. As it is achieved using a linear search on a classification rule list, a large number of rules will lead to longer communication latency. To solve this, the problem of finding the order of rules minimizing the latency has been studied. Misherghi et al. and Harada et al. have proposed a problem that relaxes to policy-based constraints. In this paper, we show that the Relaxed Optimal Rule Ordering (RORO) for the allowlist is NP-hard, and by reducing from this we show that RORO for the general rule list is NP-hard. We also propose a heuristic algorithm based on the greedy method for an allowlist. Furthermore, we demonstrate the effectiveness of our method using ClassBench, which is a benchmark for packet classification algorithms.

  • A Fast Algorithm for Finding a Maximal Common Subsequence of Multiple Strings

    Miyuji HIROTA  Yoshifumi SAKAI  

     
    LETTER-Algorithms and Data Structures

      Pubricized:
    2023/03/06
      Vol:
    E106-A No:9
      Page(s):
    1191-1194

    For any m strings of total length n, we propose an O(mn log n)-time, O(n)-space algorithm that finds a maximal common subsequence of all the strings, in the sense that inserting any character in it no longer yields a common subsequence of them. Such a common subsequence could be treated as indicating a nontrivial common structure we could find in the strings since it is NP-hard to find any longest common subsequence of the strings.

  • iLEDGER: A Lightweight Blockchain Framework with New Consensus Method for IoT Applications

    Veeramani KARTHIKA  Suresh JAGANATHAN  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/06
      Vol:
    E106-A No:9
      Page(s):
    1251-1262

    Considering the growth of the IoT network, there is a demand for a decentralized solution. Incorporating the blockchain technology will eliminate the challenges faced in centralized solutions, such as i) high infrastructure, ii) maintenance cost, iii) lack of transparency, iv) privacy, and v) data tampering. Blockchain-based IoT network allows businesses to access and share the IoT data within their organization without a central authority. Data in the blockchain are stored as blocks, which should be validated and added to the chain, for this consensus mechanism plays a significant role. However, existing methods are not designed for IoT applications and lack features like i) decentralization, ii) scalability, iii) throughput, iv) faster convergence, and v) network overhead. Moreover, current blockchain frameworks failed to support resource-constrained IoT applications. In this paper, we proposed a new consensus method (WoG) and a lightweight blockchain framework (iLEDGER), mainly for resource-constrained IoT applications in a permissioned environment. The proposed work is tested in an application that tracks the assets using IoT devices (Raspberry Pi 4 and RFID). Furthermore, the proposed consensus method is analyzed against benign failures, and performance parameters such as CPU usage, memory usage, throughput, transaction execution time, and block generation time are compared with state-of-the-art methods.

  • Service Deployment Model with Virtual Network Function Resizing Based on Per-Flow Priority

    Keigo AKAHOSHI  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2023/03/24
      Vol:
    E106-B No:9
      Page(s):
    786-797

    This paper investigates a service deployment model for network function virtualization which handles per-flow priority to minimize the deployment cost. Service providers need to implement network services each of which consists of one or more virtual network functions (VNFs) with satisfying requirements of service delays. In our previous work, we studied the service deployment model with per-host priority; flows belonging to the same service, for the same VNF, and handled on the same host have the same priority. We formulated the model as an optimization problem, and developed a heuristic algorithm named FlexSize to solve it in practical time. In this paper, we address per-flow priority, in which flows of the same service, VNF, and host have different priorities. In addition, we expand FlexSize to handle per-flow priority. We evaluate per-flow and per-host priorities, and the numerical results show that per-flow priority reduces deployment cost compared with per-host priority.

  • On the Weakness of Non-Dual Ring-LWE Mod Prime Ideal q by Trace Map

    Tomoka TAKAHASHI  Shinya OKUMURA  Atsuko MIYAJI  

     
    PAPER

      Pubricized:
    2023/07/13
      Vol:
    E106-D No:9
      Page(s):
    1423-1434

    The recent decision by the National Institute of Standards and Technology (NIST) to standardize lattice-based cryptography has further increased the demand for security analysis. The Ring-Learning with Error (Ring-LWE) problem is a mathematical problem that constitutes such lattice cryptosystems. It has many algebraic properties because it is considered in the ring of integers, R, of a number field, K. These algebraic properties make the Ring-LWE based schemes efficient, although some of them are also used for attacks. When the modulus, q, is unramified in K, it is known that the Ring-LWE problem, to determine the secret information s ∈ R/qR, can be solved by determining s (mod q) ∈ Fqf for all prime ideals q lying over q. The χ2-attack determines s (mod q) ∈Fqf using chi-square tests over R/q ≅ Fqf. The χ2-attack is improved in the special case where the residue degree f is two, which is called the two-residue-degree χ2-attack. In this paper, we extend the two-residue-degree χ2-attack to the attack that works efficiently for any residue degree. As a result, the attack time against a vulnerable field using our proposed attack with parameter (q,f)=(67, 3) was 129 seconds on a standard PC. We also evaluate the vulnerability of the two-power cyclotomic fields.

  • Fish School Behaviour Classification for Optimal Feeding Using Dense Optical Flow

    Kazuki FUKAE  Tetsuo IMAI  Kenichi ARAI  Toru KOBAYASHI  

     
    PAPER

      Pubricized:
    2023/06/20
      Vol:
    E106-D No:9
      Page(s):
    1472-1479

    With the growing global demand for seafood, sustainable aquaculture is attracting more attention than conventional natural fishing, which causes overfishing and damage to the marine environment. However, a major problem facing the aquaculture industry is the cost of feeding, which accounts for about 60% of a fishing expenditure. Excessive feeding increases costs, and the accumulation of residual feed on the seabed negatively impacts the quality of water environments (e.g., causing red tides). Therefore, the importance of raising fishes efficiently with less food by optimizing the timing and quantity of feeding becomes more evident. Thus, we developed a system to quantitate the amount of fish activity for the optimal feeding time and feed quantity based on the images taken. For quantitation, optical flow that is a method for tracking individual objects was used. However, it is difficult to track individual fish and quantitate their activity in the presence of many fishes. Therefore, all fish in the filmed screen were considered as a single school and the amount of change in an entire screen was used as the amount of the school activity. We divided specifically the entire image into fixed regions and quantitated by vectorizing the amount of change in each region using optical flow. A vector represents the moving distance and direction. We used the numerical data of a histogram as the indicator for the amount of fish activity by dividing them into classes and recording the number of occurrences in each class. We verified the effectiveness of the indicator by quantitating the eating and not eating movements during feeding. We evaluated the performance of the quantified indicators by the support vector classification, which is a form of machine learning. We confirmed that the two activities can be correctly classified.

  • Imbalanced Data Over-Sampling Method Based on ISODATA Clustering

    Zhenzhe LV  Qicheng LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/06/12
      Vol:
    E106-D No:9
      Page(s):
    1528-1536

    Class imbalance is one of the challenges faced in the field of machine learning. It is difficult for traditional classifiers to predict the minority class data. If the imbalanced data is not processed, the effect of the classifier will be greatly reduced. Aiming at the problem that the traditional classifier tends to the majority class data and ignores the minority class data, imbalanced data over-sampling method based on iterative self-organizing data analysis technique algorithm(ISODATA) clustering is proposed. The minority class is divided into different sub-clusters by ISODATA, and each sub-cluster is over-sampled according to the sampling ratio, so that the sampled minority class data also conforms to the imbalance of the original minority class data. The new imbalanced data composed of new minority class data and majority class data is classified by SVM and Random Forest classifier. Experiments on 12 datasets from the KEEL datasets show that the method has better G-means and F-value, improving the classification accuracy.

  • Discriminative Question Answering via Cascade Prompt Learning and Sentence Level Attention Mechanism

    Xiaoguang YUAN  Chaofan DAI  Zongkai TIAN  Xinyu FAN  Yingyi SONG  Zengwen YU  Peng WANG  Wenjun KE  

     
    PAPER-Natural Language Processing

      Pubricized:
    2023/06/02
      Vol:
    E106-D No:9
      Page(s):
    1584-1599

    Question answering (QA) systems are designed to answer questions based on given information or with the help of external information. Recent advances in QA systems are overwhelmingly contributed by deep learning techniques, which have been employed in a wide range of fields such as finance, sports and biomedicine. For generative QA in open-domain QA, although deep learning can leverage massive data to learn meaningful feature representations and generate free text as answers, there are still problems to limit the length and content of answers. To alleviate this problem, we focus on the variant YNQA of generative QA and propose a model CasATT (cascade prompt learning framework with the sentence-level attention mechanism). In the CasATT, we excavate text semantic information from document level to sentence level and mine evidence accurately from large-scale documents by retrieval and ranking, and answer questions with ranked candidates by discriminative question answering. Our experiments on several datasets demonstrate the superior performance of the CasATT over state-of-the-art baselines, whose accuracy score can achieve 93.1% on IR&QA Competition dataset and 90.5% on BoolQ dataset.

  • Data Gathering Scheme for Event Detection and Recognition in Low Power Wide Area Networks

    Taiki SUEHIRO  Tsuyoshi KOBAYASHI  Osamu TAKYU  Yasushi FUWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/01/31
      Vol:
    E106-B No:8
      Page(s):
    669-685

    Event detection and recognition are important for environmental monitoring in the Internet of things and cyber-physical systems. Low power wide area (LPWA) networks are one of the most powerful wireless sensor networks to support data gathering; however, they do not afford peak wireless access from sensors that detect significant changes in sensing data. Various data gathering schemes for event detection and recognition have been proposed. However, these do not satisfy the requirement for the three functions for the detection of the occurrence of an event, the recognition of the position of an event, and the recognition of spillover of impact from an event. This study proposes a three-stage data gathering scheme for LPWA. In the first stage, the access limitation based on the comparison between the detected sensing data and the high-level threshold is effective in reducing the simultaneous accessing sensors; thus, high-speed recognition of the starting event is achieved. In the second stage, the data centre station designates the sensor to inform the sensing data to achieve high accuracy of the position estimation of the event. In the third stage, all the sensors, except for the accessing sensors in the early stage, access the data centre. Owing to the exhaustive gathering of sensing data, the spillover of impact from the event can be recognised with high accuracy. We implement the proposed data gathering scheme for the actual wireless sensor system of the LPWA. From the computer simulation and experimental evaluation, we show the advantage of the proposed scheme compared to the conventional scheme.

  • Temporal-Based Action Clustering for Motion Tendencies

    Xingyu QIAN  Xiaogang CHEN  Aximu YUEMAIER  Shunfen LI  Weibang DAI  Zhitang SONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/05/02
      Vol:
    E106-D No:8
      Page(s):
    1292-1295

    Video-based action recognition encompasses the recognition of appearance and the classification of action types. This work proposes a discrete-temporal-sequence-based motion tendency clustering framework to implement motion clustering by extracting motion tendencies and self-supervised learning. A published traffic intersection dataset (inD) and a self-produced gesture video set are used for evaluation and to validate the motion tendency action recognition hypothesis.

  • Variable Ordering in Binary Decision Diagram Using Spider Monkey Optimization for Node and Path Length Optimization

    Mohammed BALAL SIDDIQUI  Mirza TARIQ BEG  Syed NASEEM AHMAD  

     
    PAPER-VLSI Design Technology and CAD

      Pubricized:
    2023/01/16
      Vol:
    E106-A No:7
      Page(s):
    976-989

    Binary Decision Diagrams (BDDs) are an important data structure for the design of digital circuits using VLSI CAD tools. The ordering of variables affects the total number of nodes and path length in the BDDs. Finding a good variable ordering is an optimization problem and previously many optimization approaches have been implemented for BDDs in a number of research works. In this paper, an optimization approach based on Spider Monkey Optimization (SMO) algorithm is proposed for the BDD variable ordering problem targeting number of nodes and longest path length. SMO is a well-known swarm intelligence-based optimization approach based on spider monkeys foraging behavior. The proposed work has been compared with other latest BDD reordering approaches using Particle Swarm Optimization (PSO) algorithm. The results obtained show significant improvement over the Particle Swarm Optimization method. The proposed SMO-based method is applied to different benchmark digital circuits having different levels of complexities. The node count and longest path length for the maximum number of tested circuits are found to be better in SMO than PSO.

41-60hit(2923hit)