The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RIN(2923hit)

101-120hit(2923hit)

  • Novel Configuration for Phased-Array Antenna System Employing Frequency-Controlled Beam Steering Method

    Atsushi FUKUDA  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2022/06/10
      Vol:
    E105-C No:12
      Page(s):
    740-749

    This paper presents a novel frequency-controlled beam steering scheme for a phased-array antenna system (PAS). The proposed scheme employs phase-controlled carrier signals to form the PAS beam. Two local oscillators (LOs) and delay lines are used to generate the carrier signals. The carrier of one LO is divided into branches, and then the divided carriers passing through the corresponding delay lines have the desired phase relationship, which depends on the oscillation frequency of the LO. To confirm the feasibility of the scheme, four-branch PAS transmitters are configured and tested in a 10-GHz frequency band. The results verify that the formed beam is successfully steered in a wide range, i.e., the 3-dB beamwidth of approximately 100 degrees, using LO frequency control.

  • Communication-Efficient Federated Indoor Localization with Layerwise Swapping Training-FedAvg

    Jinjie LIANG  Zhenyu LIU  Zhiheng ZHOU  Yan XU  

     
    PAPER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/05/11
      Vol:
    E105-A No:11
      Page(s):
    1493-1502

    Federated learning is a promising strategy for indoor localization that can reduce the labor cost of constructing a fingerprint dataset in a distributed training manner without privacy disclosure. However, the traffic generated during the whole training process of federated learning is a burden on the up-and-down link, which leads to huge energy consumption for mobile devices. Moreover, the non-independent and identically distributed (Non-IID) problem impairs the global localization performance during the federated learning. This paper proposes a communication-efficient FedAvg method for federated indoor localization which is improved by the layerwise asynchronous aggregation strategy and layerwise swapping training strategy. Energy efficiency can be improved by performing asynchronous aggregation between the model layers to reduce the traffic cost in the training process. Moreover, the impact of the Non-IID problem on the localization performance can be mitigated by performing swapping training on the deep layers. Extensive experimental results show that the proposed methods reduce communication traffic and improve energy efficiency significantly while mitigating the impact of the Non-IID problem on the precision of localization.

  • A KPI Anomaly Detection Method Based on Fast Clustering

    Yun WU  Yu SHI  Jieming YANG  Lishan BAO  Chunzhe LI  

     
    PAPER

      Pubricized:
    2022/05/27
      Vol:
    E105-B No:11
      Page(s):
    1309-1317

    In the Artificial Intelligence for IT Operations scenarios, KPI (Key Performance Indicator) is a very important operation and maintenance monitoring indicator, and research on KPI anomaly detection has also become a hot spot in recent years. Aiming at the problems of low detection efficiency and insufficient representation learning of existing methods, this paper proposes a fast clustering-based KPI anomaly detection method HCE-DWL. This paper firstly adopts the combination of hierarchical agglomerative clustering (HAC) and deep assignment based on CNN-Embedding (CE) to perform cluster analysis (that is HCE) on KPI data, so as to improve the clustering efficiency of KPI data, and then separately the centroid of each KPI cluster and its Transformed Outlier Scores (TOS) are given weights, and finally they are put into the LightGBM model for detection (the Double Weight LightGBM model, referred to as DWL). Through comparative experimental analysis, it is proved that the algorithm can effectively improve the efficiency and accuracy of KPI anomaly detection.

  • MFSFET with 5nm Thick Ferroelectric Nondoped HfO2 Gate Insulator Utilizing Low Power Sputtering for Pt Gate Electrode Deposition

    Joong-Won SHIN  Masakazu TANUMA  Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    578-583

    In this research, we investigated the metal-ferroelectric-semiconductor field-effect transistors (MFSFETs) with 5nm thick nondoped HfO2 gate insulator by decreasing the sputtering power for Pt gate electrode deposition. The leakage current was effectively reduced to 2.6×10-8A/cm2 at the voltage of -1.5V by the sputtering power of 40W for Pt electrode deposition. Furthermore, the memory window (MW) of 0.53V and retention time over 10 years were realized.

  • New Family of Polyphase Sequences with Low Correlation from Galois Rings

    Linyan YU  Pinhui KE  Zuling CHANG  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2022/04/20
      Vol:
    E105-A No:10
      Page(s):
    1425-1428

    In this letter, we give a new construction of a family of sequences of period pk-1 with low correlation value by using additive and multiplicative characters over Galois rings. The new constructed sequence family has family size (M-1)(pk-1)rpkr(e-1) and alphabet size Mpe. Based on the characters sum over Galois rings, an upper bound on the correlation of this sequence family is presented.

  • Analysis of Efficiency-Limiting Factors Resulting from Transistor Current Source on Class-F and Inverse Class-F Power Amplifiers Open Access

    Hiroshi YAMAMOTO  Ken KIKUCHI  Valeria VADALÀ  Gianni BOSI  Antonio RAFFO  Giorgio VANNINI  

     
    INVITED PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    449-456

    This paper describes the efficiency-limiting factors resulting from transistor current source in the case of class-F and inverse class-F (F-1) operations under saturated region. We investigated the influence of knee voltage and gate-voltage clipping behaviors on drain efficiency as limiting factors for the current source. Numerical analysis using a simplified transistor model was carried out. As a result, we have demonstrated that the limiting factor for class-F-1 operation is the gate-diode conduction rather than knee voltage. On the other hand, class-F PA is restricted by the knee voltage effects. Furthermore, nonlinear measurements carried out on a GaN HEMT validate our analytical results.

  • Sub-Terahertz MIMO Spatial Multiplexing in Indoor Propagation Environments Open Access

    Yasutaka OGAWA  Taichi UTSUNO  Toshihiko NISHIMURA  Takeo OHGANE  Takanori SATO  

     
    INVITED PAPER

      Pubricized:
    2022/04/18
      Vol:
    E105-B No:10
      Page(s):
    1130-1138

    A sub-Terahertz band is envisioned to play a great role in 6G to achieve extreme high data-rate communication. In addition to very wide band transmission, we need spatial multiplexing using a hybrid MIMO system. A recently presented paper, however, reveals that the number of observed multipath components in a sub-Terahertz band is very few in indoor environments. A channel with few multipath components is called sparse. The number of layers (streams), i.e. multiplexing gain in a MIMO system does not exceed the number of multipaths. The sparsity may restrict the spatial multiplexing gain of sub-Terahertz systems, and the poor multiplexing gain may limit the data rate of communication systems. This paper describes fundamental considerations on sub-Terahertz MIMO spatial multiplexing in indoor environments. We examined how we should steer analog beams to multipath components to achieve higher channel capacity. Furthermore, for different beam allocation schemes, we investigated eigenvalue distributions of a channel Gram matrix, power allocation to each layer, and correlations between analog beams. Through simulation results, we have revealed that the analog beams should be steered to all the multipath components to lower correlations and to achieve higher channel capacity.

  • The Effect of Inter Layers on the Ferroelectric Undoped HfO2 Formation

    Masakazu TANUMA  Joong-Won SHIN  Shun-ichiro OHMI  

     
    PAPER

      Pubricized:
    2022/06/27
      Vol:
    E105-C No:10
      Page(s):
    584-588

    In this research, we investigated the effect of Hf inter layer and chemical oxide on Si(100) substrate on the ferroelectric undoped HfO2 deposition. In case with 1 nm-thick Hf inter layer, equivalent oxide thickness (EOT) was decreased from 6.0 to 4.8 nm for 10 nm-thick HfO2 with decreasing annealing temperature. In case with 0.5 nm-thick chemical oxide, EOT was decreased from 3.9 to 3.6 nm in MFS diodes for 5 nm-thick HfO2. The MFSFET was fabricated with 10 nm-thick HfO2 utilizing Hf inter layer. The subthreshold swing was improved from 240 mV/dec. to 120 mV/dec. and saturation mobility was increased from 70 cm2/(Vs) to 140 cm2/(Vs) by inserting Hf inter layer.

  • New VVC Chroma Prediction Modes Based on Coloring with Inter-Channel Correlation

    Zhi LIU  Jia CAO  Xiaohan GUAN  Mengmeng ZHANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2022/06/27
      Vol:
    E105-D No:10
      Page(s):
    1821-1824

    Inter-channel correlation is one of the redundancy which need to be eliminated in video coding. In the latest video coding standard H.266/VVC, the DM (Direct Mode) and CCLM (Cross-component Linear Model) modes have been introduced to reduce the similarity between luminance and chroma. However, inter-channel correlation is still observed. In this paper, a new inter-channel prediction algorithm is proposed, which utilizes coloring principle to predict chroma pixels. From the coloring perspective, for most natural content video frames, the three components Y, U and V always demonstrate similar coloring pattern. Therefore, the U and V components can be predicted using the coloring pattern of the Y component. In the proposed algorithm, correlation coefficients are obtained in a lightweight way to describe the coloring relationship between current pixel and reference pixel in Y component, and used to predict chroma pixels. The optimal position for the reference samples is also designed. Base on the selected position of the reference samples, two new chroma prediction modes are defined. Experiment results show that, compared with VTM 12.1, the proposed algorithm has an average of -0.92% and -0.96% BD-rate improvement for U and V components, for All Intra (AI) configurations. At the same time, the increased encoding time and decoding time can be ignored.

  • Speeding-Up Construction Algorithms for the Graph Coloring Problem

    Kazuho KANAHARA  Kengo KATAYAMA  Etsuji TOMITA  

     
    PAPER-Numerical Analysis and Optimization, Algorithms and Data Structures, Graphs and Networks

      Pubricized:
    2022/03/18
      Vol:
    E105-A No:9
      Page(s):
    1241-1251

    The Graph Coloring Problem (GCP) is a fundamental combinatorial optimization problem that has many practical applications. Degree of SATURation (DSATUR) and Recursive Largest First (RLF) are well known as typical solution construction algorithms for GCP. It is necessary to update the vertex degree in the subgraph induced by uncolored vertices when selecting vertices to be colored in both DSATUR and RLF. There is an issue that the higher the edge density of a given graph, the longer the processing time. The purposes of this paper are to propose a degree updating method called Adaptive Degree Updating (ADU for short) that improves the issue, and to evaluate the effectiveness of ADU for DSATUR and RLF on DIMACS benchmark graphs as well as random graphs having a wide range of sizes and densities. Experimental results show that the construction algorithms with ADU are faster than the conventional algorithms for many graphs and that the ADU method yields significant speed-ups relative to the conventional algorithms, especially in the case of large graphs with higher edge density.

  • Altered Fingerprints Detection Based on Deep Feature Fusion

    Chao XU  Yunfeng YAN  Lehangyu YANG  Sheng LI  Guorui FENG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2022/06/13
      Vol:
    E105-D No:9
      Page(s):
    1647-1651

    The altered fingerprints help criminals escape from police and cause great harm to the society. In this letter, an altered fingerprint detection method is proposed. The method is constructed by two deep convolutional neural networks to train the time-domain and frequency-domain features. A spectral attention module is added to connect two networks. After the extraction network, a feature fusion module is then used to exploit relationship of two network features. We make ablation experiments and add the module proposed in some popular architectures. Results show the proposed method can improve the performance of altered fingerprint detection compared with the recent neural networks.

  • Faster Final Exponentiation on the KSS18 Curve

    Shi Ping CAI  Zhi HU  Chang An ZHAO  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2022/02/22
      Vol:
    E105-A No:8
      Page(s):
    1162-1164

    The final exponentiation affects the efficiency of pairing computations especially on pairing-friendly curves with high embedding degree. We propose an efficient method for computing the hard part of the final exponentiation on the KSS18 curve at the 192-bit security level. Implementations indicate that the computation of the final exponentiation is 8.74% faster than the previously fastest result.

  • Experimental Extraction Method for Primary and Secondary Parameters of Shielded-Flexible Printed Circuits

    Taiki YAMAGIWA  Yoshiki KAYANO  Yoshio KAMI  Fengchao XIAO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2022/02/28
      Vol:
    E105-B No:8
      Page(s):
    913-922

    In this paper, an experimental method is proposed for extracting the primary and secondary parameters of transmission lines with frequency dispersion. So far, there is no report of these methods being applied to transmission lines with frequency dispersion. This paper provides an experimental evaluation means of transmission lines with frequency dispersion and clarifies the issues when applying the proposed method. In the proposed experimental method, unnecessary components such as connectors are removed by using a simple de-embedding method. The frequency response of the primary and secondary parameters extracted by using the method reproduced all dispersion characteristics of a transmission line with frequency dispersion successfully. It is demonstrated that an accurate RLGC equivalent-circuit model is obtained experimentally, which can be used to quantitatively evaluate the frequency/time responses of shielded-FPC with frequency dispersion and to validate RLGC equivalent-circuit models extracted by using electromagnetic field analysis.

  • A Hybrid Genetic Service Mining Method Based on Trace Clustering Population

    Yahui TANG  Tong LI  Rui ZHU  Cong LIU  Shuaipeng ZHANG  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2022/04/28
      Vol:
    E105-D No:8
      Page(s):
    1443-1455

    Service mining aims to use process mining for the analysis of services, making it possible to discover, analyze, and improve service processes. In the context of Web services, the recording of all kinds of events related to activities is possible, which can be used to extract new information of service processes. However, the distributed nature of the services tends to generate large-scale service event logs, which complicates the discovery and analysis of service processes. To solve this problem, this research focus on the existing large-scale service event logs, a hybrid genetic service mining based on a trace clustering population method (HGSM) is proposed. By using trace clustering, the complex service system is divided into multiple functionally independent components, thereby simplifying the mining environment; And HGSM improves the mining efficiency of the genetic mining algorithm from the aspects of initial population quality improvement and genetic operation improvement, makes it better handle large service event logs. Experimental results demonstrate that compare with existing state-of-the-art mining methods, HGSM has better characteristics to handle large service event logs, in terms of both the mining efficiency and model quality.

  • Linear Complexity of a Class of Quaternary Sequences with Optimal Autocorrelation

    Lu ZHAO  Bo XU  Tianqing CAO  Jiao DU  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2022/01/13
      Vol:
    E105-A No:7
      Page(s):
    1070-1081

    A unified construction for yielding optimal and balanced quaternary sequences from ideal/optimal balanced binary sequences was proposed by Zeng et al. In this paper, the linear complexity over finite field 𝔽2, 𝔽4 and Galois ring ℤ4 of the quaternary sequences are discussed, respectively. The exact values of linear complexity of sequences obtained by Legendre sequence pair, twin-prime sequence pair and Hall's sextic sequence pair are derived.

  • A Large-Scale Bitcoin Abuse Measurement and Clustering Analysis Utilizing Public Reports

    Jinho CHOI  Jaehan KIM  Minkyoo SONG  Hanna KIM  Nahyeon PARK  Minjae SEO  Youngjin JIN  Seungwon SHIN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/04/07
      Vol:
    E105-D No:7
      Page(s):
    1296-1307

    Cryptocurrency abuse has become a critical problem. Due to the anonymous nature of cryptocurrency, criminals commonly adopt cryptocurrency for trading drugs and deceiving people without revealing their identities. Despite its significance and severity, only few works have studied how cryptocurrency has been abused in the real world, and they only provide some limited measurement results. Thus, to provide a more in-depth understanding on the cryptocurrency abuse cases, we present a large-scale analysis on various Bitcoin abuse types using 200,507 real-world reports collected by victims from 214 countries. We scrutinize observable abuse trends, which are closely related to real-world incidents, to understand the causality of the abuses. Furthermore, we investigate the semantics of various cryptocurrency abuse types to show that several abuse types overlap in meaning and to provide valuable insight into the public dataset. In addition, we delve into abuse channels to identify which widely-known platforms can be maliciously deployed by abusers following the COVID-19 pandemic outbreak. Consequently, we demonstrate the polarization property of Bitcoin addresses practically utilized on transactions, and confirm the possible usage of public report data for providing clues to track cyber threats. We expect that this research on Bitcoin abuse can empirically reach victims more effectively than cybercrime, which is subject to professional investigation.

  • A Solar-Cell-Assisted, 99% Biofuel Cell Area Reduced, Biofuel-Cell-Powered Wireless Biosensing System in 65nm CMOS for Continuous Glucose Monitoring Contact Lenses Open Access

    Guowei CHEN  Kiichi NIITSU  

     
    BRIEF PAPER

      Pubricized:
    2022/01/05
      Vol:
    E105-C No:7
      Page(s):
    343-348

    This brief proposes a solar-cell-assisted wireless biosensing system that operates using a biofuel cell (BFC). To facilitate BFC area reduction for the use of this system in area-constrained continuous glucose monitoring contact lenses, an energy harvester combined with an on-chip solar cell is introduced as a dedicated power source for the transmitter. A dual-oscillator-based supply voltage monitor is employed to convert the BFC output into digital codes. From measurements of the test chip fabricated in 65-nm CMOS technology, the proposed system can achieve 99% BFC area reduction.

  • Industry 4.0 Based Business Process Re-Engineering Framework for Manufacturing Industry Setup Incorporating Evolutionary Multi-Objective Optimization

    Anum TARIQ  Shoab AHMED KHAN  

     
    PAPER-Software Engineering

      Pubricized:
    2022/04/08
      Vol:
    E105-D No:7
      Page(s):
    1283-1295

    Manufacturers are coping with increasing pressures in quality, cost and efficiency as more and more industries are moving from traditional setup to industry 4.0 based digitally transformed setup due to its numerous playbacks. Within the manufacturing domain organizational structures and processes are complex, therefore adopting industry 4.0 and finding an optimized re-engineered business process is difficult without using a systematic methodology. Authors have developed Business Process Re-engineering (BPR) and Business Process Optimization (BPO) methods but no consolidated methodology have been seen in the literature that is based on industry 4.0 and incorporates both the BPR and BPO. We have presented a consolidated and systematic re-engineering and optimization framework for a manufacturing industry setup. The proposed framework performs Evolutionary Multi-Objective Combinatorial Optimization using Multi-Objective Genetic Algorithm (MOGA). An example process from an aircraft manufacturing factory has been optimized and re-engineered with available set of technologies from industry 4.0 based on the criteria of lower cost, reduced processing time and reduced error rate. At the end to validate the proposed framework Business Process Model and Notation (BPMN) is used for simulations and perform comparison between AS-IS and TO-BE processes as it is widely used standard for business process specification. The proposed framework will be used in converting an industry from traditional setup to industry 4.0 resulting in cost reduction, increased performance and quality.

  • Synchronous Sharing of Lecture Slides and Photo Messaging during Real-Time Online Classes

    Haeyoung LEE  

     
    LETTER-Educational Technology

      Pubricized:
    2022/04/21
      Vol:
    E105-D No:7
      Page(s):
    1348-1351

    This letter presents an innovative solution for real-time interaction during online classes. Synchronous sharing enables instructors to provide real-time feedback to students. This encourages students to stay focused and feel engaged during class. Consequently, students evaluated anonymously that this solution significantly enhanced their learning experience during real-time online classes.

  • A Framework for Synchronous Remote Online Exams

    Haeyoung LEE  

     
    LETTER-Educational Technology

      Pubricized:
    2022/04/22
      Vol:
    E105-D No:7
      Page(s):
    1343-1347

    This letter presents a new framework for synchronous remote online exams. This framework proposes new monitoring of notebooks in remote locations and limited messaging only enabled between students and their instructor during online exams. This framework was evaluated by students as highly effective in minimizing cheating during online exams.

101-120hit(2923hit)