The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RMON(140hit)

61-80hit(140hit)

  • Local Peak Enhancement for In-Car Speech Recognition in Noisy Environment

    Osamu ICHIKAWA  Takashi FUKUDA  Masafumi NISHIMURA  

     
    LETTER

      Vol:
    E91-D No:3
      Page(s):
    635-639

    The accuracy of automatic speech recognition in a car is significantly degraded in a very low SNR (Signal to Noise Ratio) situation such as "Fan high" or "Window open". In such cases, speech signals are often buried in broadband noise. Although several existing noise reduction algorithms are known to improve the accuracy, other approaches that can work with them are still required for further improvement. One of the candidates is enhancement of the harmonic structures in human voices. However, most conventional approaches are based on comb filtering, and it is difficult to use them in practical situations, because their assumptions for F0 detection and for voiced/unvoiced detection are not accurate enough in realistic noisy environments. In this paper, we propose a new approach that does not rely on such detection. An observed power spectrum is directly converted into a filter for speech enhancement, by retaining only the local peaks considered to be harmonic structures in the human voice. In our experiments, this approach reduced the word error rate by 17% in realistic automobile environments. Also, it showed further improvement when used with existing noise reduction methods.

  • Stepped-Impedance Hairpin Resonators with Asymmetric Capacitively Loaded Coupled Lines for Improved Stopband Characteristics

    Apirada NAMSANG  Thammarat MAJAENG  Jaruek JANTREE  Sarawuth CHAIMOOL  Prayoot AKKARAEKTHALIN  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2185-2191

    New microstrip bandpass filters with extended stopband bandwidths are proposed by using new asymmetric stepped-impedance hairpin resonators (ASIHRs). The size of the proposed resonators has been reduced around 16%, comparing with the conventional stepped-impedance hairpin resonators (SIHRs) structure. The first bandpass filter is a combination of differ resonators with the same fundamental frequency but differ in harmonic frequencies, resulting in improved suppression spurious responses in stopbands. Furthermore, another bandpass filter uses the ASIHRs periodically loaded on a microstrip line to improve stopband characteristics. The proposed filters not only have compact size of resonators, but also provide improved upper stopband characteristics. The proposed filters provide 20 dB rejection levels in the stopband up to 6f0. The measured filters responses agree very well with the simulated expectations.

  • Improved Variant of Pisarenko Harmonic Decomposition for Single Sinusoidal Frequency Estimation

    Kenneth Wing-Kin LUI  Hing-Cheung SO  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:11
      Page(s):
    2604-2607

    It is well known that Pisarenko's frequency estimate for a single real tone can be computed easily using the sample covariance with lags 1 and 2. In this Letter, we propose to use alternative covariance expressions, which are inspired from the modified covariance (MC) frequency estimator, in Pisarenko's algorithm. Computer simulations are included to corroborate the theoretical development of the variant and to demonstrate its superiority over the MC and Pisarenko's methods.

  • Efficient Applications of Invariants to Harmonic Balance Equation Using Grobner Base

    Masakazu YAGI  Takashi HISAKADO  

     
    PAPER-Nonlinear Phenomena and Analysis

      Vol:
    E90-A No:10
      Page(s):
    2178-2186

    This paper presents efficient applications of invariants to harmonic balance (HB) methods using Grobner base. The Grobner base is a powerful tool based on ideal theory. Using the Grobner base, we can obtain the solutions of the HB equation. However, its computation is very time-consuming when the equation has equivalent different solutions based on symmetries of the system. We show that invariants enable to transpose the equivalent different solutions to a unique solution. The bifurcation diagram of the invariant is simpler than the original bifurcation diagram, and its computation is considerably decreased. Further, we can obtain the relation among the amplitudes of each frequency component using the invariants. We propose a method for finding the circuit parameters using the amplitude relation.

  • Design of a New Folded Cascode Op-Amp Using Positive Feedback and Bulk Amplification

    Mohsen ASLONI  Khayrollah HADIDI  Abdollah KHOEI  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1253-1257

    In this paper, a new operational amplifier is presented that improves the specifications such as dc gain, common mode rejection ratio. To obtain these improvements, we have used the two important concepts of feedback and bulk amplification.

  • Nonlinear Estimation of Harmonic Signals

    Kiyoshi NISHIYAMA  

     
    PAPER-Digital Signal Processing

      Vol:
    E90-A No:5
      Page(s):
    1021-1027

    A nonlinear harmonic estimator (NHE) is proposed for extracting a harmonic signal and its fundamental frequency in the presence of white noise. This estimator is derived by applying an extended complex Kalman filter (ECKF) to a multiple sinusoidal model with state-representation and then efficiently specializing it for the case of harmonic estimation. The effectiveness of the NHE is verified using computer simulations.

  • Guided-Wave EO Intensity Modulator Using Coupled Microstrip Line Electrode of Higher-Order Harmonic Resonance Combined with Polarization-Reversed Structure

    Akira ENOKIHARA  Hiroyoshi YAJIMA  Hiroshi MURATA  Yasuyuki OKAMURA  

     
    PAPER-LiNbO3 Devices

      Vol:
    E90-C No:5
      Page(s):
    1096-1104

    A novel structure of a resonator type guided-wave electro-optic intensity modulator is introduced that uses a higher-order harmonic resonant electrode of coupled microstrip lines combined with polarization-reversed structure. The light modulation cancellation caused by the light transit-time effect in the resonant electrode, which is longer than the wavelength of the standing wave, is compensated for to enhance modulation efficiency. The modulator for 26 GHz operation was designed and fabricated with a LiTaO3 substrate. The modulation electrode is 9.03 mm long for seventh order harmonic resonance by RF signal. The workability of the modulator was confirmed by experiments with 1.3 µm wavelength light.

  • 10-GHz SiGe BiCMOS Sub-Harmonic Gilbert Mixer Using the Fully Symmetrical and Time-Delay Compensated LO Cells

    Tzung-Han WU  Chinchun MENG  

     
    PAPER

      Vol:
    E90-A No:2
      Page(s):
    326-332

    A 10-GHz sub-harmonic Gilbert mixer is demonstrated in this paper using the 0.35 µm SiGe BiCMOS technology. The time-delay when the sub-harmonic LO (Local Oscillator) stage generates sub-harmonic LO signals is compensated by using fully symmetrical multiplier pairs. High RF-to-IF isolation and sub-harmonic LO Gilbert cell with excellent frequency response can be achieved by the elimination of the time-delay. The SiGe BiCMOS sub-harmonic micromixer exhibits 17 dB conversion gain, -74 dB 2LO-to-RF isolation, IP1 dB of -20 dBm, and IIP3 of -10 dBm. The measured double sideband noise figure is 16 dB from 100-kHz to 100-MHz because the SiGe bipolar device has very low 1/f noise corner.

  • Spice-Oriented Frequency-Domain Analysis of Nonlinear Electronic Circuits

    Junji KAWATA  Yousuke TANIGUCHI  Masayoshi ODA  Yoshihiro YAMAGAMI  Yoshifumi NISHIO  Akio USHIDA  

     
    LETTER

      Vol:
    E90-A No:2
      Page(s):
    406-410

    Distortion analysis of nonlinear circuits is very important for designing analog integrated circuits and communication systems. In this letter, we propose an efficient frequency-domain approach for calculating frequency response curves, which is based on HB (harmonic balance) method combining with ABMs (Analog Behavior Models) of Spice. Firstly, nonlinear devices such as bipolar transistors and MOSFETs are transformed into the HB device modules executing the Fourier transformations. Using these modules, the determining equation of the HB method is formed by the equivalent sine-cosine circuit in the schematic form or net-list. It consists of the coupled resistive circuits, so that it can be efficiently solved by the DC analysis of Spice. In our algorithm, we need not to derive any troublesome circuit equations, and any kinds of the transformations.

  • A Balanced Even Harmonic Quadrature Mixer Using Anti Parallel Diode Pairs

    Mitsuhiro SHIMOZAWA  Noriharu SUEMATSU  Kenji ITOH  Yoji ISOTA  

     
    PAPER-Active Circuits/Devices/Monolithic Microwave Integrated Circuits

      Vol:
    E89-C No:12
      Page(s):
    1821-1828

    An even harmonic quadrature mixer (EH-QMIX) with a balanced configuration is proposed for a direct conversion receiver. The unit even harmonic mixer (EHMIX) used for I/Q paths consists of two anti parallel diode pairs (APDPs) and a pair of diplexers. When the second harmonic of LO (2LO) from the LO section is applied to the LO port as a spurious component, a conventional single-ended EHMIX using APDP converts the 2LO leakage from the LO section into the baseband and the d.c. offset and the self-detected LO noise arise at the baseband degrade the sensitivity. This proposed balanced EHMIX configuration can cancel out the 2LO leakage in itself. Therefore, the d.c. offset and the LO noise are significantly suppressed and the degradation of the sensitivity can be avoided. The suppression characteristic of the d.c. offset and the LO noise are verified by the simulation and the measurements. By using this balanced configuration, the fabricated EH-QMIX achieves wider frequency band characteristic than that of the single-ended EH-QMIX, and it shows 20% relative bandwidth at L-band.

  • On the Expected Prediction Error of Orthogonal Regression with Variable Components

    Katsuyuki HAGIWARA  Hiroshi ISHITANI  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E89-A No:12
      Page(s):
    3699-3709

    In this article, we considered the asymptotic expectations of the prediction error and the fitting error of a regression model, in which the component functions are chosen from a finite set of orthogonal functions. Under the least squares estimation, we showed that the asymptotic bias in estimating the prediction error based on the fitting error includes the true number of components, which is essentially unknown in practical applications. On the other hand, under a suitable shrinkage method, we showed that an asymptotically unbiased estimate of the prediction error is given by the fitting error plus a known term except the noise variance.

  • A Compact C-CMRC Feeding Open-Loop Resonator for Harmonic Rejection Bandpass Filter

    Jianzhong GU  Xiaowei SUN  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:9
      Page(s):
    1365-1367

    A compact open-loop resonator bandpass filter is presented to suppress the spurious passband using compensated compact microstrip resonant cell (C-CMRC) feeding structure. Based on the inherently compact and stopband characteristics of the C-CMRC feeding, the proposed filters shows a better spurious rejection performance than the only open-loop resonator filter. The suppression is -57.4 dB, -49.5 dB, and -43.9 dB at the 2nd, 3rd and 4th harmonic signal separately. All the performance of proposed filters have been verified by the measured results.

  • An Even Harmonic Quadrature Mixer with a Simple Filter Configuration and an Integrated LTCC Module for W-CDMA Direct Conversion Receiver

    Mitsuhiro SHIMOZAWA  Kenichi MAEDA  Eiji TANIGUCHI  Keiichi SADAHIRO  Takayuki IKUSHIMA  Tamotsu NISHINO  Noriharu SUEMATSU  Kenji ITOH  Yoji ISOTA  Tadashi TAKAGI  

     
    PAPER

      Vol:
    E89-C No:4
      Page(s):
    473-481

    This paper presents an even harmonic quadrature mixer (EH-QMIX) with a simple filter configuration and an integrated LTCC module including LNAs, band rejection filters (BRFs), and the proposed EH-QMIX for W-CDMA direct conversion receiver (DCR). Since the DCR has no spurious responses, a BRF instead of a high-Q band pass filter can be applicable for eliminating undesired signals and it can be built in the LTCC substrates easily. As LO frequency is half of RF frequency in the EH-QMIX, diplexer can be composed of simple filters and it can be also integrated in the substrates. As a result, the whole RF circuits of the EH-DCR using a proposed EH-QMIX are integrated in the LTCC module and miniaturization of the receiver is achieved. Moreover, in order to suppress the degradation of the amplitude and the phase imbalances in the quadrature mixer caused by interferences of signals, RF characteristics of the circuits in the mixer such as reflection coefficients, isolations are discussed. A developed LTCC module shows good performances for W-CDMA direct conversion receiver.

  • Analysis of Reactance Oscillators Having Multi-Mode Oscillations

    Yoshihiro YAMAGAMI  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER-Circuit Theory

      Vol:
    E89-A No:3
      Page(s):
    764-771

    We consider oscillators consisting of a reactance circuit and a negative resistor. They may happen to have multi-mode oscillations around the anti-resonant frequencies of the reactance circuit. This kind of oscillators can be easily synthesized by setting the resonant and anti-resonant frequencies of the reactance circuits. However, it is not easy to analyze the oscillation phenomena, because they have multiple oscillations whose oscillations depend on the initial guesses. In this paper, we propose a Spice-oriented solution algorithm combining the harmonic balance method with Newton homotopy method that can find out the multiple solutions on the homotopy paths. In our analysis, the determining equations from the harmonic balance method are given by modified equivalent circuit models of "DC," "Cosine" and "Sine" circuits. The modified circuits can be solved by a simulator STC (solution curve tracing circuit), where the multiple oscillations are found by the transient analysis of Spice. Thus, we need not to derive the troublesome circuit equations, nor the mathematical transformations to get the determining equations. It makes the solution algorithms much simpler.

  • Aperture-Backed Microstrip-Line Stepped-Impedance Resonators and Transformers for Performance-Enhanced Bandpass Filters

    Hang WANG  Lei ZHU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:3
      Page(s):
    403-409

    A novel class of microstrip bandpass filter is configured using the impedance transformers and an improved stepped impedance resonator (SIR). This SIR is composed of a central narrow strip section with an aperture on ground and two wide strip sections at the two sides. This low-high-low SIR resonator has a promising capability in achieving an extremely large ratio of first two resonant frequencies for design of a bandpass filter with ultra-broad stopband. The two quarter-wavelength transformers with low and high impedances, referred as to impedance- and admittance-inverters, are modeled and utilized as alternative types of inductive and capacitive coupling elements with highly tightened degrees for wideband filter design. After extensive investigation is made on the two transformers and the proposed SIR, the two novel bandpass filters are constructed, designed and implemented. Two sets of predicted and measured frequency responses over a wide frequency range both quantitatively exhibit their several attractive features, such as ultra-broad stopband with deep rejection and broadened dominant passband with low insertion loss.

  • A Reliable Low-Voltage Low-Distortion MOS Analog Switch

    Chun-Yueh YANG  Chung-Chih HUNG  

     
    LETTER

      Vol:
    E89-A No:2
      Page(s):
    456-458

    A novel low-voltage low-distortion analog sampling switch is proposed in this letter. A "source tracker" techniuqe is used to distinguish the real source terminal of the sampling switch. The turn-on resistance of the sampling switch is kept exactly constant. The modified switch makes the rail-to-rail input signal swing possible for low voltage. TSMC 0.18 µm standard CMOS technology is utilized in this research. Results indicate that much lower Total Harmonic Distortion (THD) is achieved by the proposed circuit. The low THD meets the requirements in the application of the low-voltage low-distortion switched-capacitor circuits.

  • Computational Methods for Surface Relief Gratings Using Electric and Magnetic Flux Expansions

    Minoru KOMATSU  Hideaki WAKABAYASHI  Jiro YAMAKITA  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2192-2198

    The relative permittivity and permeability are discontinuous at the grating profile, and the electric and magnetic flux densities are continuous. As for the method of analysis for scattering waves by surface relief gratings placed in conical mounting, the spatial harmonic expansion approach of the flux densities are formulated in detail and the validity of the approach is shown numerically. The present method is effective for uniform regions such as air and substrate in addition to grating layer. The matrix formulations are introduced by using numerical calculations of the matrix eigenvalue problem in the grating region and analytical solutions separated for TE and TM waves in the uniform region are described. Some numerical examples for linearly and circularly polarized incidence show the usefulness of the flux densities expansion approach.

  • A Millimeter-Wave Pulse Transmitter with a Harmonic Mixer

    Kenji KAWAKAMI  Hiroshi IKEMATSU  Koichi MATSUO  Naohisa UEHARA  Moriyasu MIYAZAKI  Tadashi TAKAGI  

     
    PAPER

      Vol:
    E88-C No:10
      Page(s):
    1947-1951

    This paper describes a millimeter-wave pulse transmitter with a 38 GHz-band Voltage Controlled Oscillator (VCO) and a 77/38 GHz-band harmonic mixer. This harmonic mixer works as both of a pulse modulator and a multiplier. This configuration of the transmitter is very simple, and can be applied to high-speed pulse modulation like Ultra Wide Band. By using the harmonic mixer, furthermore, a fluctuation of the load impedance of the 38 GHz VCO can be reduced. Compared with the conventional configuration, the required amount of isolation between the VCO and the load has been able to be reduced by more than 30 dB as a result of the experiment in a millimeter-wave band.

  • Side-Coupled Microstrip Open-Loop Resonator for Harmonic-Suppressed Bandpass Filters

    Hang WANG  Lei ZHU  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:9
      Page(s):
    1893-1895

    A side-coupled microstrip open-loop resonator is presented for design of harmonic-suppressed bandpass filters with compact size. In geometry, the open-ended microstrip feed line is put in close proximity to the loop resonator at the opposite side of an opened-gap. In design, its length is properly lengthened to establish the orthogonal even- and odd-symmetrical current distributions along the two coupled strip conductors. It thus results in cancellation the 1st parasitic resonance. The two-stage open-loop filter is first constructed and its performance is studied under varied feed line lengths. Furthermore, a four-stage filter block is optimally designed at 2.52 GHz and its circuit sample is fabricated with the overall length less than 60% of one guided wavelength. The measured insertion loss at the 1st harmonic is higher than 30 dB, the stopband covers the range from 2.8 GHz to 7.0 GHz, and the dominant pass bandwidth is about 9.0%.

  • Suppression of the Input Current Harmonics and Output Voltage Ripple Using the Novel Multiple-Input AC-DC Converter

    Kimiyoshi KOBAYASHI  Hirofumi MATSUO  Fujio KUROKAWA  Yoichi ISHIZUKA  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:8
      Page(s):
    1785-1789

    This paper presents the novel method not only to suppress the input current harmonics but also to realize the low frequency output voltage ripple using the multiple-input ac-dc converter, which is considered from viewpoints of the relatively small power application and simple circuit configuration. The operation principle and control strategy of the proposed circuit are discussed. As a result, it is clarified that the new circuit has excellent performance characteristics such as high power factor over 0.99, low total harmonic current distortion factor less than 9.2% and low output voltage ripple of 40 mV.

61-80hit(140hit)