The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RMON(140hit)

1-20hit(140hit)

  • Non-Contact PIM Measurement Method Using Balanced Transmission Lines for Impedance Matched PIM Measurement Systems

    Ryunosuke MUROFUSHI  Nobuhiro KUGA  Eiji HANAYAMA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E106-B No:12
      Page(s):
    1329-1336

    In this paper, a concept of non-contact PIM evaluation method using balanced transmission lines is proposed for impedance-matched PIM measurement systems. In order to evaluate the PIM characteristics of a MSL by using its image model, measurement system using balanced transmission line is introduced. In non-contact PIM measurement, to reduce undesirable PIM generation by metallic contact and the PIM-degradation in repeated measurements, a non-contact connector which is applicable without any design changes in DUT is introduce. The three-dimensional balun composed of U-balun and balanced transmission line is also proposed so that it can be applicable to conventional unbalanced PIM measurement systems. In order to validate the concept of the proposed system, a sample using nickel producing high PIM is introduced. In order to avoid the effect of the non-contact connection part on observed PIM, a sample-configuration that PIM-source exists outside of the non-contact connection part is introduced. It is also shown using a sample using copper that, nickel-sample can be clearly differentiated in PIM characteristics while it is equivalent to low-PIM sample in scattering-parameter characteristics. Finally, by introducing the TRL-calibration and by extracting inherent DUT-characteristics from whole-system characteristics, a method to estimate the PIM characteristics of DUT which cannot be taken directly in measurement is proposed.

  • Analysis and Design of Class-Φ22 Wireless Power Transfer System

    Weisen LUO  Xiuqin WEI  Hiroo SEKIYA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1402-1410

    This paper presents an analysis-based design method for designing the class-Φ22 wireless power transfer (WPT) system, taking its subsystems as a whole into account. By using the proposed design method, it is possible to derive accurate design values which can make sure the class-E Zero-Voltage-Switching/Zero-Derivative-Switching (ZVS/ZDS) to obtain without applying any tuning processes. Additionally, it is possible to take the effects of the switch on resistance, diode forward voltage drop, and equivalent series resistances (ESRs) of all passive elements on the system operations into account. Furthermore, design curves for a wide range of parameters are developed and organized as basic data for various applications. The validities of the proposed design procedure and derived design curves are confirmed by LTspice simulation and circuit experiment. In the experimental measurements, the class-Φ22 WPT system achieves 78.8% power-transmission efficiency at 6.78MHz operating frequency and 7.96W output power. Additionally, the results obtained from the LTspice simulation and laboratory experiment show quantitative agreements with the analytical predictions, which indicates the accuracy and validity of the proposed analytical method and design curves given in this paper.

  • A 58-%-Lock-Range Divide-by-9 Injection-Locked Frequency Divider Using Harmonic-Control Technique

    Sangyeop LEE  Shuhei AMAKAWA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    BRIEF PAPER

      Pubricized:
    2023/04/06
      Vol:
    E106-C No:10
      Page(s):
    529-532

    This paper presents a divide-by-9 injection-locked frequency divider (ILFD). It can lock onto about 6-GHz input with a locking range of 3.23GHz (58%). The basic concept of the ILFD is based on employing self-gated multiple inputs into the multiple-stage ring oscillator. A wide lock range is also realized by adapting harmonic-control circuits, which can boost specific harmonics generated by mixing. The ILFD was fabricated using a 55-nm deeply depleted channel (DDC) CMOS process. It occupies an area of 0.0210mm2, and consumes a power of 14.4mW.

  • Analysis of Efficiency-Limiting Factors Resulting from Transistor Current Source on Class-F and Inverse Class-F Power Amplifiers Open Access

    Hiroshi YAMAMOTO  Ken KIKUCHI  Valeria VADALÀ  Gianni BOSI  Antonio RAFFO  Giorgio VANNINI  

     
    INVITED PAPER

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:10
      Page(s):
    449-456

    This paper describes the efficiency-limiting factors resulting from transistor current source in the case of class-F and inverse class-F (F-1) operations under saturated region. We investigated the influence of knee voltage and gate-voltage clipping behaviors on drain efficiency as limiting factors for the current source. Numerical analysis using a simplified transistor model was carried out. As a result, we have demonstrated that the limiting factor for class-F-1 operation is the gate-diode conduction rather than knee voltage. On the other hand, class-F PA is restricted by the knee voltage effects. Furthermore, nonlinear measurements carried out on a GaN HEMT validate our analytical results.

  • Class-E Power Amplifier with Improved PAE Bandwidth Using Double CRLH TL Stub for Harmonic Tuning Open Access

    Shinichi TANAKA  Hirotaka ASAMI  Takahiro SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2022/04/11
      Vol:
    E105-C No:10
      Page(s):
    441-448

    This paper presents a class-E power amplifier (PA) with a novel harmonic tuning circuit (HTC) based on composite right-/left-handed transmission lines (CRLH TLs). One of the issues of conventional harmonically tuned PAs is the limited PAE bandwidth. It is shown by simulation that class-E amplifiers have potential of maintaining high PAE over a wider frequency range than for example class-F amplifiers. To make full use of class-E amplifiers with the superior characteristics, an HTC using double CRLH TL stub structure is proposed. The HTC is not only compact but also enhances the inherently wide operation frequency range of class-E amplifier. A 2-GHz 6W GaN-HEMT class-E PA using the proposed HTC demonstrated a PAE bandwidth (≥65%) of 380MHz with maximum drain efficiency and PAE of 78.5% and 74.0%, respectively.

  • 13.56MHz Half-Bridge GaN-HEMT Resonant Inverter Achieving High Power, Low Distortion, and High Efficiency by ‘L-S Network’ Open Access

    Aoi OYANE  Thilak SENANAYAKE  Mitsuru MASUDA  Jun IMAOKA  Masayoshi YAMAMOTO  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/03/25
      Vol:
    E105-C No:9
      Page(s):
    407-418

    This paper proposes a topology of high power, MHz-frequency, half-bridge resonant inverter ideal for low-loss Gallium Nitride high electron mobility transistor (GaN-HEMT). General GaN-HEMTs have drawback of low drain-source breakdown voltage. This property has prevented conventional high-frequency series resonant inverters from delivering high power to high resistance loads such as 50Ω, which is typically used in radio frequency (RF) systems. High resistance load causes hard-switching also and reduction of power efficiency. The proposed topology overcomes these difficulties by utilizing a proposed ‘L-S network’. This network is effective combination of a simple impedance converter and a series resonator. The proposed topology provides not only high power for high resistance load but also arbitrary design of output wattage depending on impedance conversion design. In addition, the current through the series resonator is low in the L-S network. Hence, this series resonator can be designed specifically for harmonic suppression with relatively high quality-factor and zero reactance. Low-distortion sinusoidal 3kW output is verified in the proposed inverter at 13.56MHz by computer simulations. Further, 99.4% high efficiency is achieved in the power circuit in 471W experimental prototype.

  • On the Window Choice for Two DFT Magnitude-Based Frequency Estimation Methods

    Hee-Suk PANG  Seokjin LEE  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2021/07/19
      Vol:
    E105-A No:1
      Page(s):
    53-57

    We analyze the effect of window choice on the zero-padding method and corrected quadratically interpolated fast Fourier transform using a harmonic signal in noise at both high and low signal-to-noise ratios (SNRs) on a theoretical basis. Then, we validate the theoretical analysis using simulations. The theoretical analysis and simulation results using four traditional window functions show that the optimal window is determined depending on the SNR; the estimation errors are the smallest for the rectangular window at low SNR, the Hamming and Hanning windows at mid SNR, and the Blackman window at high SNR. In addition, we analyze the simulation results using the signal-to-noise floor ratio, which appears to be more effective than the conventional SNR in determining the optimal window.

  • Visualizing Positive and Negative Charges of Triboelectricity Generated on Polyimide Film

    Dai TAGUCHI  Takaaki MANAKA  Mitsumasa IWAMOTO  

     
    PAPER

      Pubricized:
    2020/10/23
      Vol:
    E104-C No:6
      Page(s):
    170-175

    Triboelectric generator is attracting much attention as a power source of electronics application. Electromotive force induced by rubbing is a key for triboelectric generator. From dielectric physics point of view, there are two microscopic origins for electromotive force, i.e., electronic charge displacement and dipolar rotation. A new way for evaluating these two origins is an urgent task. We have been developing an optical second-harmonic generation (SHG) technique as a tool for probing charge displacement and dipolar alignment, selectively, by utilizing wavelength dependent response of SHG to the two origins. In this paper, an experimental way that identifies polarity of electronic charge displacement, i.e., positive charge and negative charge, is proposed. Results showed that the use of local oscillator makes it possible to identify the polarity of charges by means of SHG. As an example, positive and negative charge distribution created by rubbing polyimide surface is illustrated.

  • 0.3 V 15-GHz Band VCO ICs with Novel Transformer-Based Harmonic Tuned Tanks in 45-nm SOI CMOS

    Xiao XU  Tsuyoshi SUGIURA  Toshihiko YOSHIMASU  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/04/10
      Vol:
    E103-C No:10
      Page(s):
    417-425

    This paper presents two ultra-low voltage and high performance VCO ICs with two novel transformer-based harmonic tuned tanks. The first proposed harmonic tuned tank effectively shapes the pseudo-square drain-node voltage waveform for close-in phase noise reduction. To compensate the voltage drop caused by the transformer, an improved second tank is proposed. It not only has tuned harmonic impedance but also provides a voltage gain to enlarge the output voltage swing over supply voltage limitation. The VCO with second tank exhibits over 3 dB better phase noise performance in 1/f2 region among all tuning range. The two VCO ICs are designed, fabricated and measured on wafer in 45-nm SOI CMOS technology. With only 0.3 V supply voltage, the proposed two VCO ICs exhibit best phase noise of -123.3 and -127.2 dBc/Hz at 10 MHz offset and related FoMs of -191.7 and -192.2 dBc/Hz, respectively. The frequency tuning ranges of them are from 14.05 to 15.14 GHz and from 14.23 to 15.68 GHz, respectively.

  • A Robust Low-Complexity Generalized Harmonic Canceling Model for Wideband RF Power Amplifiers

    Xiaoran CHEN  Xin QIU  Xurong CHAI  Fuqi MU  

     
    LETTER-Digital Signal Processing

      Vol:
    E103-A No:9
      Page(s):
    1120-1126

    Broadband amplifiers have been used in modern wireless communication systems. However, the accompanying disadvantage is that there is more nonlinear interference in the available operating frequency band. In addition to the in-band intermodulation distortion which affecting adjacent frequency bands the most important is harmonic distortion. In this letter we present a robust and low complex digital harmonic canceling model called cross-disturbing harmonic (CDH) model for broadband power amplifiers (PAs). The approach introducing cross terms is used to enhance the robustness of the model, thereby significantly increase the stability of the system. The CDH model still has excellent performance when actively reducing the number of coefficients. Comparisons are conducted between the CDH model and the other state-of-the-art model called memory polynomial harmonic (MPM) model. Experimental results show that the CDH model can achieve comparable performance as the MPM model but with much fewer (43%) coefficients.

  • A Retrieval Method for 3D CAD Assembly Models Using 3D Radon Transform and Spherical Harmonic Transform

    Kaoru KATAYAMA  Takashi HIRASHIMA  

     
    PAPER

      Pubricized:
    2020/02/20
      Vol:
    E103-D No:5
      Page(s):
    992-1001

    We present a retrieval method for 3D CAD assemblies consisted of multiple components. The proposed method distinguishes not only shapes of 3D CAD assemblies but also layouts of their components. Similarity between two assemblies is computed from feature quantities of the components constituting the assemblies. In order to make the similarity robust to translation and rotation of an assembly in 3D space, we use the 3D Radon transform and the spherical harmonic transform. We show that this method has better retrieval precision and efficiency than targets for comparison by experimental evaluation.

  • On Performance of Deep Learning for Harmonic Spur Cancellation in OFDM Systems

    Ziming HE  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E103-A No:2
      Page(s):
    576-579

    In this letter, the performance of a state-of-the-art deep learning (DL) algorithm in [5] is analyzed and evaluated for orthogonal frequency-division multiplexing (OFDM) receivers, in the presence of harmonic spur interference. Moreover, a novel spur cancellation receiver structure and algorithm are proposed to enhance the traditional OFDM receivers, and serve as a performance benchmark for the DL algorithm. It is found that the DL algorithm outperforms the traditional algorithm and is much more robust to spur carrier frequency offset.

  • Frequency Efficient Subcarrier Spacing in Multicarrier Backscatter Sensors System Open Access

    Jin MITSUGI  Yuki SATO  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1834-1841

    Backscatter wireless communications offer advantages such as batteryless operations, small form factor, and radio regulatory exemption sensors. The major challenge ahead of backscatter wireless communications is synchronized multicarrier data collection, which can be realized by rejecting mutual harmonics among backscatters. This paper analyzes the mutual interferences of digitally modulated multicarrier backscatter to find interferences from higher frequency subcarriers to lower frequency subcarriers, which do not take place in analog modulated multicarrier backscatters, is harmful for densely populated subcarriers. This reverse interference distorts the harmonics replica, deteriorating the performance of the existing method, which rejects mutual interference among subcarriers by 5dB processing gain. To solve this problem, this paper analyzes the relationship between subcarrier spacing and reverse interference, and reveals that an alternate channel spacing, with channel separation twice the bandwidth of a subcarrier, can provide reasonably dense subcarrier allocation and can alleviate reverse interference. The idea is examined with prototype sensors in a wired experiment and in an indoor propagation experiment. The results reveal that with alternate channel spacing, the reverse interference practically becomes negligible, and the existing interference rejection method achieves the original processing gain of 5dB with one hundredth packet error rate reduction.

  • Experimental Study on a Retrodirective System Utilizing Harmonic Reradiation from Rectenna Open Access

    Tomohiko MITANI  Shogo KAWASHIMA  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    666-672

    A retrodirective system utilizing harmonic reradiation from a rectenna is developed and verified for long-range wireless power transfer applications, such as low-power or battery-less devices and lightweight aerial vehicles. The second harmonic generated by the rectifying circuit is used instead of a pilot signal, and thus an oscillator for creating the pilot signal is not required. The proposed retrodirective system consists of a 2.45 GHz transmitter with a two-element phased array antenna, a 4.9 GHz direction-of-arrival (DoA) estimation system, a phase control system, and a rectenna. The rectenna, consisting of a half-wave dipole antenna, receives microwave power from the 2.45 GHz transmitter and reradiates the harmonic toward the 4.9 GHz DoA estimation system. The rectenna characteristics and experimental demonstrations of the proposed retrodirective system are described. From measurement results, the dc output power pattern for the developed retrodirective system is in good agreement with that obtained using manual beam steering. The measured DoA estimation errors are within the range of -2.4° to 4.8°.

  • Ultra-Low Voltage 15-GHz Band Best FoM <-190 dBc/Hz LC-VCO ICs with Novel Harmonic Tuned LC Tank in 45-nm SOI CMOS

    Xiao XU  Tsuyoshi SUGIURA  Toshihiko YOSHIMASU  

     
    PAPER

      Vol:
    E102-C No:10
      Page(s):
    673-681

    This paper presents two ultra-low voltage and high performance VCO ICs with novel harmonic tuned LC tank which provides different harmonic impedance and shapes the pseudo-square drain voltage waveform of transistors. In the novel tank, two additional inductors are connected between the drains of the cross-coupled pMOSFETs and the conventional LC tank, and they effectively decrease second harmonic load impedance and increase third harmonic load impedance of the transistors. In this paper, the novel harmonic tuned LC tank is applied to two different structure VCOs. These two VCOs exhibit over 2 dB better phase noise performance than conventional LC tank VCOs among all tuning range. The conventional and proposed VCO ICs are designed, fabricated and measured on wafer in 45-nm SOI CMOS technology. With novel harmonic tuned LC tank, the novel two VCOs exhibit measured best phase-noise of -125.7 and -129.3 dBc/Hz at 10 MHz offset and related FoM of -190.2 and -190.5 dBc/Hz at a supply voltage of 0.3 V and 0.35 V, respectively. Frequency tuning range of the two VCOs are from 13.01 to 14.34 GHz and from 15.02 to 16.03GHz, respectively.

  • Design of Integrated High Voltage Pulse Generator for Medical Ultrasound Transmitters

    Deng-Fong LU  Chin HSIA  Jian-Chiun LIOU  Yen-Chung HUANG  

     
    PAPER

      Pubricized:
    2018/12/28
      Vol:
    E102-B No:6
      Page(s):
    1121-1127

    Design of an equivalent slew-rate monolithic pulse generator using bipolar-CMOS-DMOS (BCD) technology for medical ultrasound transmitters is presented in this paper. The pulse generator employs a floating capacitive coupling level-shifter architecture to produce a high-voltage (Vpp=80V) output. The performance of equivalent slew-rate in the rising and falling edge is achieved by carefully choosing the value of coupling capacitors and the size of the final stage high-voltage MOSFETs of the pulse generator. The measured output pulses show the rising and falling time of 8.6nsec and 8.5nsec, respectively with second harmonic distortion down to -40dBc, indicating the designed pulse generator can be used for advanced ultrasonic harmonic imaging systems.

  • Probing Internal Electric Field in Organic Photoconductors by Using Electric-Field-Induced Optical Second-Harmonic Generation

    Dai TAGUCHI  Takaaki MANAKA  Mitsumasa IWAMOTO  Kazuko SAKUMA  Kaname WATARIGUCHI  Masataka KAWAHARA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    113-118

    Organic photoconductors (OPC) have been an important research and development topics for high quality electrophotography. By using electric field induced optical second harmonic generation (EFISHG) measurement, we can probe carrier processes in electrophotographic processes such as photo carrier generation, carrier separation, and carrier transportation for copier image production. We here selectively probe charge generation and accumulation in charge generation layer and charge transport layer in multilayer structure OPCs. We studied charge accumulation in OPC under illumination (wavelength 635nm) of double-layer-type OPC with structure of hole transport layer coated on charge generation layer. The result showed that light absorption efficiently produces free holes and electrons in the charge generation layer, followed by excessive hole accumulation at the CG/CT interface due to photo-conducting effect of CG layer. The short-wavelength irradiation at 405nm induced photovoltaic effect. These results demonstrated that the EFISHG measurement is useful to selectively probe carrier process in one layer of the multilayer OPC and to the discussion of carrier process for electrophotographic image productions.

  • Concurrent Backscatter Streaming from Batteryless and Wireless Sensor Tags with Multiple Subcarrier Multiple Access

    Nitish RAJORIA  Yuki IGARASHI  Jin MITSUGI  Yuusuke KAWAKITA  Haruhisa ICHIKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/06/13
      Vol:
    E100-B No:12
      Page(s):
    2121-2128

    This paper proposes a novel multiple access method that enables concurrent sensor data streaming from multiple batteryless, wireless sensor tags. The access method is a pseudo-FDMA scheme based on the subcarrier backscatter communication principle, which is widely employed in passive RFID and radar systems. Concurrency is realized by assigning a dedicated subcarrier to each sensor tag and letting all sensor tags backscatter simultaneously. Because of the nature of the subcarrier, which is produced by constant rate switching of antenna impedance without any channel filter in the sensor tag, the tag-to-reader link always exhibits harmonics. Thus, it is important to reject harmonics when concurrent data streaming is required. This paper proposes a harmonics rejecting receiver to allow simultaneous multiple subcarrier usage. This paper particularly focuses on analog sensor data streaming which minimizes the functional requirements on the sensor tag and frequency bandwidth. The harmonics rejection receiver is realized by carefully handling group delay and phase delay of the subcarrier envelope and the carrier signal to accurately produce replica of the harmonics by introducing Hilbert and inverse Hilbert transformations. A numerical simulator with Simulink and a hardware implementation with USRP and LabVIEW have been developed. Simulations and experiments reveal that even if the CIR before harmonics rejection is 0dB, the proposed receiver recovers the original sensor data with over 0.98 cross-correlation.

  • Simulating the Three-Dimensional Room Transfer Function for a Rotatable Complex Source

    Bing BU  Changchun BAO  Maoshen JIA  

     
    LETTER-Engineering Acoustics

      Vol:
    E100-A No:11
      Page(s):
    2487-2492

    This letter proposes an extended image-source model to simulate the room transfer function for a rotatable complex source in a three-dimensional reverberant room. The proposed model uses spherical harmonic decomposition to describe the exterior sound field from the complex source. Based on “axis flip” concept, the mirroring relations between the source and images are summarized by a unified mirroring operator that occurs on the soundfield coefficients. The rotation movement of the source is taken into account by exploiting the rotation property of spherical harmonics. The accuracy of our proposed model is verified through the appropriate simulation examples.

  • Analysis and Design of a Full 360 degrees, Harmonic-Suppressed Hybrid Coupler Phase Shifter

    Chai Eu GUAN  Ahmed I.A. GALAL  Nagamitsu MIZOGUCHI  Akira ISHIKAWA  Shugo FUKAGAWA  Ryuji KITAYA  Haruichi KANAYA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    875-883

    The analysis and design of a full 360 degrees hybrid coupler phase shifter with integrated distributed elements low pass filters is presented. Pi-section filter is incorporated into hybrid coupler phase shifter for harmonic suppression. The physical size of the proposed structure is close to that of the conventional hybrid coupler phase shifter. The maximum phase shift range is bounded by the port impedance ratio of the hybrid coupler phase shifter. Furthermore, the phase shift range is reduced if series inductance in the reflective load deviates from the optimum value. Numerical and parametric analyses are used to find the equivalent circuit of the pi-section filter for consistent relative phase shift. To validate our analysis, the proposed phase shifter operates at 8.6GHz was fabricated and measured. Over the frequency range of interest, the fabricated phase shifter suppresses second harmonic and achieves analog phase shift of 0 to 360 degrees at the passband, agreeing with the theoretical and simulation results.

1-20hit(140hit)