The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROSC(133hit)

61-80hit(133hit)

  • Superconductivity for Mass Spectroscopy

    Masataka OHKUBO  

     
    INVITED PAPER

      Vol:
    E90-C No:3
      Page(s):
    550-555

    Time-of-Flight Mass Spectroscopy (TOF-MS) with superconducting detectors has two advantages over MS with conventional ion detectors. First, it is coverage for a very wide range of molecule weight over 1,000,000. Secondly, kinetic energies of accelerated molecules can be measured at impact events one by one. These unique features enable an ultimate detection efficiency of 100% for intact ions and a fragmentation analysis that is critical for top-down proteomics. Superconducting MS is expected to play a role in, for example, the detection of antigen-antibody complexes, which are important for medical diagnosis. In this paper, how superconductivity contributes to MS is described.

  • Macroscopic Diversity Combining Technique for Forward-Link of CDMA Cellular Systems

    Yuh-Ren TSAI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E90-B No:1
      Page(s):
    69-77

    In CDMA cellular systems, the frequency reuse factor equals one. Therefore, the soft-handoff technology with combining macroscopic diversity was introduced to enhance the link performance. In this work, a novel macroscopic diversity combining scheme is proposed to enhance the link performance of the forward-link. The basic concept of this scheme is to integrate error correction coding into the soft-handoff technology. According to the number of soft-handoff channels, the source information is encoded by a convolutional code with a lower code rate. The coded symbols are then equally distributed to all channels from different BSs to the MS, and each channel carries a disjointed set of coded symbols. For this proposed scheme, no extra transmission power or bandwidth is required. The only cost is a slight increase of the encoding and decoding complexity of the convolutional codes. Numerical and simulation results show that a performance gain of 1 dB in bit energy-to-total noise power density ratio can be obtained as compared with the conventional scheme in the same conditions.

  • Verification of Au Nanodot Size Dependence on Coulomb Step Width by Non-contact Atomic-force Spectroscopy

    Yasuo AZUMA  Masayuki KANEHARA  Toshiharu TERANISHI  Yutaka MAJIMA  

     
    LETTER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1755-1757

    We demonstrate single electron counting on an alkanethiol-protected Au nanodot in a double-barrier tunneling structure by noncontact atomic-force spectroscopy (nc-AFS). The Coulomb step width dependence on the Au nanodot diameter is observed. Evaluation of fractional charge Q0 and contact potential difference by nc-AFS reveals a Vd-independent voltage shift due to Q0.

  • In Situ Observation of Reduction Behavior of Hemoglobin Molecules Adsorbed on Glass Surface

    Masayoshi MATSUI  Akiko NAKAHARA  Akiko TAKATSU  Kenji KATO  Naoki MATSUDA  

     
    PAPER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1741-1745

    In situ observation of the adsorption process and reduction behavior of hemoglobin adsorbed on a bare glass surface was studied using slab optical waveguide (SOWG) spectroscopy. The peak position of the absorption band of hemoglobin adsorbed on the glass surface was almost the same as that of hemoglobin in solution. This result agrees with results previously reported by our group. The adsorbed hemoglobin molecules were also reduced by sodium dithionite solution. The adsorbed hemoglobin molecules still maintained their function in this experimental condition.

  • Evidences for Adsorption of Heptyl Viologen Cation Radicals in Thin Deposition Layers on ITO Electrodes by Slab Optical Waveguide Spectroscopy

    Yusuke AYATO  Akiko TAKATSU  Kenji KATO  Naoki MATSUDA  

     
    PAPER-Evaluation of Organic Materials

      Vol:
    E89-C No:12
      Page(s):
    1750-1754

    In situ observations were mainly performed by using slab optical waveguide (SOWG) spectroscopy synchronized with potential step measurements to investigate the time dependent spectral change of the adsorbed heptyl viologen cation radicals (HV+) in thin deposition layer on indium-tin-oxide (ITO) electrodes. Several absorption bands, which indicated a monomer and dimer of HV+ were co-adsorbed on ITO electrode surface with a monolayer or a few layers deposition, were observed in UV-visible region. The time dependent spectra yielded some important molecular information for the adsorption phenomena of HV+ on the electrode surface. All observed absorption bands disappeared completely when the electrode potential of -200 mV vs. Ag/AgCl was applied, which indicated the adsorbed HV+ species were electrochemically reoxidized on the ITO electrode.

  • Outage Capacity Analysis of MIMO Macro-Selection Systems

    Wun-Cheol JEONG  Dongfang LIU  Jong-Moon CHUNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1916-1917

    Multiple-input multiple-output (MIMO) systems applying macroscopic selection diversity (MSD) are analyzed in composite fading channels through derived expressions of capacity outage probability. The MSD system uses a maximum capacity MIMO base station (BS) selection algorithm, where the results show a significant improvement in outage capacity.

  • Frequency Domain Multiplexing of TES Signals by Magnetic Field Summation

    Noriko Y. YAMASAKI  Yoh TAKEI  Kensuke MASUI  Kazuhisa MITSUDA  Toshimitsu MOROOKA  Satoshi NAKAYAMA  

     
    INVITED PAPER

      Vol:
    E89-C No:2
      Page(s):
    98-105

    In frequency-domain multiplexing (FDM) for TES signals, a magnetic field summation method utilizing a multi-input SQUID has the fundamental merit of small degradation of the signal-to-noise ratio. We formulated shifts of the operation point due to a common impedance and cross talk currents. These effects are evaluated for several FDM methods, and the requirements for the bandwidth and filters are summarized. The design parameters of multi-input SQUIDs and a flux locked loop driving circuits are also presented.

  • Anti-Parallel Dipole Coupling of Quantum Dots via an Optical Near-Field Interaction

    Tadashi KAWAZOE  Kiyoshi KOBAYASHI  Motoichi OHTSU  

     
    PAPER

      Vol:
    E88-C No:9
      Page(s):
    1845-1849

    We observed the optically forbidden energy transfer between cubic CuCl quantum dots coupled via an optical near-field interaction using time-resolved near-field photoluminescence (PL) spectroscopy. The energy transfer time and exciton lifetime were estimated from the rise and decay times of the PL pump-probe signal, respectively. We found that the exciton lifetime increased as the energy transfer time fell. This result strongly supports the notion that near-field interaction between QD makes the anti-parallel dipole coupling. Namely, a quantum-dots pair coupled by an optical near field has a long exciton lifetime which indicates the anti-parallel coupling of QDs forming a weakly radiative quadrupole state.

  • A Proposal on a New Algorithm for Volume Calculation Based on Laser Microscope Data

    Makoto HASEGAWA  Masato AKITA  Kazutaka IZUMI  Takayoshi KUBONO  

     
    LETTER-Contact Phenomena

      Vol:
    E88-C No:8
      Page(s):
    1573-1576

    We initiated development of our own data processing software for laser microscope data with C# language. This software is provided with volume calculation function of a target portion, based on a new calculation algorithm that can precisely handle the volume calculation of the portion located on a tilted surface or on a distorted surface. In this paper, this algorithm and some exemplary results obtained thereby, as well as some further development aims, are briefly described.

  • Observations of the Eroded Surfaces and the Motion of Arc Spots at Each Breaking Operation of Silver Electrical Contacts

    Junya SEKIKAWA  Tetsuya KITAJIMA  Takayoshi ENDO  Takayoshi KUBONO  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E88-C No:8
      Page(s):
    1590-1595

    The motion of arc spots of breaking arc is investigated for Ag electrical contacts in DC 42 V/10 A resistive circuit using a high-speed camera. Also, the eroded contact surfaces are observed with a microscope after each breaking operation. As results, some kinds of different films and eroded regions are distinguished. Diameters of these regions are corresponding to the widths of the cathode and anode spot regions that are obtained by using the high-speed camera. It is found that the films and eroded regions on the electrical contacts are generated at different stages of the breaking arc.

  • Extraction of Desired Spectra Using ICA Regression with DOAS

    Hyeon-Ho KIM  Sung-Hwan HAN  Hyeon-Deok BAE  

     
    LETTER-Measurement Technology

      Vol:
    E88-A No:8
      Page(s):
    2244-2246

    Recently, DOAS (differential optical absorption spectroscopy) has been used for nondestructive air monitoring, in which the LS (least squares) method is used to calculate trace gas concentrations due to its computational simplicity. This paper applies the ICA (independent component analysis) method to the DOAS system of air monitoring, since the LS method is insufficient to recover the desired spectra perfectly due to sparsity characteristic. If the sparsity of reference spectra in the DOAS system imposes the assumption of independence, the ICA algorithm can be used. The proposed method is used to regress the observed spectrum on the estimates of the reference spectra. The ICA algorithm can be seen as a preprocessing method where the ICs of the references are used as the input in the regression. The performance of the proposed method is evaluated in simulation studies using synthetic data.

  • Spectroscopic Ellipsometry Study of Organic Light Emitting Diode Based on Phosphorescent PtOEP

    Taiju TSUBOI  Yoko WASAI  Nataliya NABATOVA-GABAIN  

     
    PAPER-Characterization and Abilities of Organic Electronic Devices

      Vol:
    E87-C No:12
      Page(s):
    2039-2044

    We have determined the thickness and optical constants (refractive index and extinction coefficient) of each layer in the multi-layer organic light emitting diode (OLED) devices based on phosphorescent platinum octaethyl porphine (PtOEP) using a phase modulated spectroscopic ellipsometer. The thickness of each layer estimated from the ellipsometric measurement is different from the thickness measured with quartz oscillator during the evaporation of organic materials. The deviation of total multi-layer thickness is about 5%, while the deviation in each of N, N'-bis(1-naphtyl)-N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) and aluminum tris 8-hydroxyquinoline (Alq3) layers is about 20-25%. Additionally the spectra of refractive index and extinction coefficient of Alq3 and α-NPD layers are different from those that are measured using the single layer films. These results are understood by penetration of organic material from the neighboring layers in the multi-layer structure devices.

  • A Resonant Slit-Type Probe for Millimeter-Wave Scanning Near-Field Microscopy

    Tatsuo NOZOKIDO  Tomohiro OHBAYASHI  Jongsuck BAE  Koji MIZUNO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:12
      Page(s):
    2158-2163

    A resonant slit-type probe is proposed in this paper that can improve measurement sensitivity in millimeter-wave scanning near-field microscopy. The probe consists of a rectangular metal waveguide incorporating the following three sections; a straight section at the tip of the probe whose height is much smaller than the operating wavelength; a standard-height waveguide section; a quarter-wave transformer section to achieve impedance-matching between the other sections. The design procedure used for the probe is presented in detail and the performance of the fabricated resonant probe is evaluated experimentally. Experiments performed at U-band frequencies in which we reconstruct 2D images show that the sensitivity of the resonant probe is improved by more than four times compared with a conventional tapered slit-type probe. Some experimental results are compared with those obtained using the finite element method (Ansoft HFSS). Good agreement is demonstrated.

  • A Proposal of a New Evaluation Scheme of Pips and Craters Formed by Arc Discharges on Electrical Contact Surfaces

    Makoto HASEGAWA  Koichiro SAWA  

     
    LETTER

      Vol:
    E87-C No:8
      Page(s):
    1277-1280

    A new scheme for evaluation of shapes of pips and craters formed by arc discharges on electrical contact surfaces is proposed. Measuring a height of a pip or a depth of a crater as well as an average diameter thereof with a scanning laser microscope and then putting a plot having the measured values as its vertical and horizontal coordinates enable us to numerically and briefly evaluate shapes of those pips and craters on arc-damaged contact surfaces. Some exemplary results obtained by this evaluation scheme are presented here.

  • Terahertz Spectroscopic Imaging and Its Application to Drug Detection

    Kodo KAWASE  Yuichi OGAWA  Yuuki WATANABE  

     
    INVITED PAPER

      Vol:
    E87-C No:7
      Page(s):
    1186-1191

    We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. We have also separated the component spatial patterns of frequency-dependent absorptions in chemicals and frequency-independent components such as plastic, paper and measurement noise in THz spectroscopic images. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes.

  • Near-Field Optical Investigations of Photonic Crystal Microresonators

    Ben C. BUCHLER  Patrick KRAMPER  Maria KAFESAKI  Costas M. SOUKOULIS  Vahid SANDOGHDAR  

     
    INVITED PAPER

      Vol:
    E87-C No:3
      Page(s):
    371-377

    We present an overview of our work on the application of scanning near-field optical microscopy (SNOM) to photonic crystal structures. Our results show that SNOM can be used to map the subwavelength confinement of light to a point-defect in a 2D photonic crystal microresonator. Comparison with numerical modelling shows that SNOM is able to resolve patterns in the intensity distribution that are due to the slight non-uniformity in the crystal structure. We also discuss the future possibilities for applications of different modes of SNOM to photonic crystal devices.

  • The Effect of Focus Voltage and Beam Repulsion on the Microscopic Electron Spot Shape

    A.A. Seyno SLUYTERMAN  Tjerk G. SPANJER  

     
    PAPER-CRT Technology

      Vol:
    E86-C No:11
      Page(s):
    2264-2268

    The size of the microscopic electron spot is an important parameter for the white-uniformity of a CRT. It changes as a function of the focus voltage and beam repulsion. This paper explains the mechanism behind this phenomenon. The model is supported by means of measurements.

  • Terahertz Time Domain Spectroscopy of Epitaxially Grown Silicon Germanium

    Jimpei TABATA  Kouichi HIRANAKA  Tohru SAITOH  Takeshi NAGASHIMA  Masanori HANGYO  

     
    PAPER

      Vol:
    E86-C No:10
      Page(s):
    1994-1999

    The DC resistivities of silicon germanium thin films on Si substrates by a non-contact and non-destructive technique using terahertz time domain spectroscopy (THz-TDS) agree with the values obtained by the four-point probe measurement. In the present experiment, the mobility has not been precisely determined owing to the limitation of the frequency range in our equipment (from 0.1 to 1.5 THz). However, when the mobility becomes large enough, this method will be highly useful in evaluating semiconductor thin films, since the method gives the same data as those from Hall measurement without sample processing or electrode contact to sample.

  • Application of a Digital Scanning Laser Microscope to 3-D Analysis of Contact Surface Damages

    Makoto HASEGAWA  Jiro MAKIMOTO  Koichiro SAWA  

     
    PAPER-Discharges & Related Phenomena

      Vol:
    E86-C No:6
      Page(s):
    932-938

    The authors have been interested in a Scanning Laser Microscope (SLM) and applied it to studies of contact phenomena. In particular, a digital SLM is being currently used, and confirmed to be a successful tool for investigating the contact phenomena. In this paper, the theory and mechanism of a digital SLM are briefly explained, and some actual data obtained with the digital SLM are presented for demonstrating its usefulness for studies of contact phenomena.

  • FDTD Analysis of a Near-Field Optical Fiber Probe with a Double Tapered Structure

    Keiji SAWADA  Hiroaki NAKAMURA  Hirotomo KAMBE  Toshiharu SAIKI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2055-2058

    Using the finite-difference time-domain method, we evaluated the performance of apertured near-field fiber probes with a double-tapered structure, which have exhibited, in recent experiments, a much higher collection efficiency of localized light in comparison with single-tapered probes. We clarified that this high collection efficiency could be attributed to the shortening of the cutoff region, and the efficient coupling to the guiding mode of the optical fiber. By reproducing the experimental results in terms of the spatial resolution and the collection efficiency as a function of the aperture diameter, our calculation was confirmed to be valid and useful for the design of probes in a variety of applications.

61-80hit(133hit)