The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ROSC(133hit)

21-40hit(133hit)

  • A 32-kHz Real-Time Clock Oscillator with On-Chip PVT Variation Compensation Circuit for Ultra-Low Power MCUs

    Keishi TSUBAKI  Tetsuya HIROSE  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER-Integrated Electronics

      Vol:
    E98-C No:5
      Page(s):
    446-453

    This paper proposes an ultra-low power fully on-chip CMOS relaxation oscillator (ROSC) for a real-time clock application. The proposed ROSC employs a compensation circuit of a comparator's non-idealities caused by offset voltage and delay time. The ROSC can generate a stable, and 32-kHz oscillation clock frequency without increasing power dissipation by using a low reference voltage and employing a novel compensation architecture for comparators. Measurement results in a 0.18-$mu$m CMOS process demonstrated that the circuit can generate a stable clock frequency of 32.55,kHz with low power dissipation of 472,nW at 1.8-V power supply. Measured line regulation and temperature coefficient were 1.1%/V and 120,ppm/$^{circ}$C, respectively.

  • Context-Based Segmentation of Renal Corpuscle from Microscope Renal Biopsy Image Sequence

    Jun ZHANG  Jinglu HU  

     
    PAPER-Image

      Vol:
    E98-A No:5
      Page(s):
    1114-1121

    A renal biopsy is a procedure to get a small piece of kidney for microscopic examination. With the development of tissue sectioning and medical imaging techniques, microscope renal biopsy image sequences are consequently obtained for computer-aided diagnosis. This paper proposes a new context-based segmentation algorithm for acquired image sequence, in which an improved genetic algorithm (GA) patching method is developed to segment different size target. To guarantee the correctness of first image segmentation and facilitate the use of context information, a boundary fusion operation and a simplified scale-invariant feature transform (SIFT)-based registration are presented respectively. The experimental results show the proposed segmentation algorithm is effective and accurate for renal biopsy image sequence.

  • Room Temperature Atomic Layer Deposition of Gallium Oxide Investigated by IR Absorption Spectroscopy

    P. Pungboon PANSILA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER

      Vol:
    E98-C No:5
      Page(s):
    382-389

    Gallium oxide is expected as a channel material for thin film transistors. In the conventional technologies, gallium oxide has been tried to be fabricated by atomic layer deposition (ALD) at high temperatures from 100--450$^{circ}$C, although the room-temperature (RT) growth has not been developed. In this work, we developed the RT ALD of gallium oxide by using a remote plasma technique. We studied trimethylgallium (TMG) adsorption and its oxidization on gallium oxide surfaces at RT by infrared absorption spectroscopy (IRAS). Based on the adsorption and oxidization characteristics, we designed the room temperature ALD of Ga$_{2}$O$_{3}$. The IRAS indicated that TMG adsorbs on the gallium oxide surface by consuming the adsorption sites of surface hydroxyl groups even at RT and the remote plasma-excited water and oxygen vapor is effective in oxidizing the TMG adsorbed surface and regeneration of the adsorption sites for TMG. We successfully prepared Ga$_{2}$O$_{3}$ films on Si substrates at RT with a growth per cycle of 0.055,nm/cycle.

  • Resistance-Switching Characteristics of Si-rich Oxide Evaluated by Using Ni Nanodots as Electrodes in Conductive AFM Measurements

    Akio OHTA  Chong LIU  Takashi ARAI  Daichi TAKEUCHI  Hai ZHANG  Katsunori MAKIHARA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E98-C No:5
      Page(s):
    406-410

    Ni nanodots (NDs) used as nano-scale top electrodes were formed on a 10-nm-thick Si-rich oxide (SiO$_{mathrm{x}}$)/Ni bottom electrode by exposing a 2-nm-thick Ni layer to remote H$_{2}$-plasma (H$_{2}$-RP) without external heating, and the resistance-switching behaviors of SiO$_{mathrm{x}}$ were investigated from current-voltage ( extit{I--V}) curves. Atomic force microscope (AFM) analyses confirmed the formation of electrically isolated Ni NDs as a result of surface migration and agglomeration of Ni atoms promoted by the surface recombination of H radicals. From local extit{I--V} measurements performed by contacting a single Ni ND as a top electrode with a Rh coated Si cantilever, a distinct uni-polar type resistance switching behavior was observed repeatedly despite an average contact area between the Ni ND and the SiO$_{mathrm{x}}$ as small as $sim$ 1.9 $ imes$ 10$^{-12}$cm$^{2}$. This local extit{I--V} measurement technique is quite a simple method to evaluate the size scalability of switching properties.

  • Nitrogen Adsorption of Si(100) Surface by Plasma Excited Ammonia

    P. Pungboon PANSILA  Kensaku KANOMATA  Bashir AHMMAD  Shigeru KUBOTA  Fumihiko HIROSE  

     
    PAPER

      Vol:
    E98-C No:5
      Page(s):
    395-401

    Nitrogen adsorption on thermally cleaned Si(100) surfaces by pure and plasma excited NH$_{3}$ is investigated by extit{in situ} IR absorption spectroscopy and ex-situ X-ray photoelectron spectroscopy with various temperatures from RT (25$^{circ}$C) to 800$^{circ}$C and with a treatment time of 5,min. The nitrogen coverage after the treatment varies according to the treatment temperature for both pure and plasma excited NH$_{3}$. In case of the pure NH$_{3}$, the nitrogen coverage is saturated as low as 0.13--0.25 mono layer (ML) while the growth of the nitride film commenced at 550$^{circ}$C. For the plasma excited NH$_{3}$, the saturation coverage was measured at 0.54,ML at RT and it remained unincreased from RT to 550$^{circ}$C. This indicates that the plasma excited NH$_{3}$ enhances the nitrogen adsorption near at RT. It is found that main species of N is Si$_{2}=$ NH in case of the plasma excited NH$_{3}$ at RT while the pure NH$_{3}$ treatment gives rise to the Si--NH$_{2}$ passivation with Si--H at RT. We discuss the mechanism of the nitrogen adsorption on Si(100) surfaces with the plasma excited NH$_{3}$ in comparison with the study on the pure NH$_{3}$ treatment.

  • Response of a Superconducting Transition-Edge Sensor Microcalorimeter with a Mushroom-shaped Absorber to L X-rays Emitted by Transuranium Elements Open Access

    Keisuke MAEHATA  Makoto MAEDA  Naoko IYOMOTO  Kenji ISHIBASHI  Keisuke NAKAMURA  Katsunori AOKI  Koji TAKASAKI  Kazuhisa MITSUDA  Keiichi TANAKA  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    178-185

    A four-pixel-array superconducting transition-edge sensor (TES) microcalorimeter with a mushroom-shaped absorber was fabricated for the energy dispersive spectroscopy performed on a transmission electron microscope. The TES consists of a bilayer of Au/Ti with either a 50-nm or 120-nm thickness. The absorber of 5.0,$mu$m thick is made from a Au layer and its stem is deposited in the center of the TES surface. A Ta$_{2}$O$_{5}$ insulating layer of 100-nm thickness is inserted between the overhang region of the absorber and the TES surface. A selected pixel of the TES microcalorimeter was operated for the detection of Np L X-rays emitted from an $^{241}$Am source. A response of the TES microcalorimeter to L X-rays was obtained by analyzing detection signal pulses with using the optimal filter method. An energy resolution was obtained to be 33,eV of the full width at half maximum value at 17.751,keV of Np L$_{eta 1}$ considering its natural width of 13.4,eV. Response to L X-rays emitted from a mixture source of $^{238}$Pu, $^{239}$Pu and $^{241}$Am was obtained by operating the selected pixel of the TES microcalorimeter. Major L X-ray peaks of progeny elements of $alpha$ decay of Pu and Am isotopes were clearly identified in the obtained energy spectrum. The experimental results demonstrated the separation of $^{241}$Am and plutonium isotopes by L X-ray spectroscopy.

  • Superconducting On-Chip Spectrometery for Millimeter-submillimeter Wave Astronomy Open Access

    Akira ENDO  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    219-226

    Since the birth of astrophysics, astronomers have been using free-space optics to analyze light falling on Earth. In the future however, thanks to the advances in photonics and nanoscience/nanotechnology, much of the manipulation of light might be carried out using not optics but confined waveguides, or circuits, on a chip. This new generation of instruments will be not only extremely compact, but also powerful in performance because the integration enables a greater degree of multiplexing. The benefit is especially profound for space- or air-borne observatories, where size, weight, and mechanical reliability are of top priority. Recently, several groups around the world are trying to integrate ultra-wideband (UWB), low-resolution spectrometers for millimeter-submillimeter waves onto microchips, using superconducting microelectronics. The scope of this Paper is to provide a general introduction and a review of the state-of-the-art of this rapidly advancing field.

  • Application of Superconducting Hot-Electron Bolometer Mixers for Terahertz-Band Astronomy Open Access

    Hiroyuki MAEZAWA  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    196-206

    Recently, a next-generation heterodyne mixer detector---a hot electron bolometer (HEB) mixer employing a superconducting microbridge---has gradually opened up terahertz-band astronomy. The surrounding state-of-the-art technologies including fabrication processes, 4 K cryostats, cryogenic low-noise amplifiers, local oscillator sources, micromachining techniques, and spectrometers, as well as the HEB mixers, have played a valuable role in the development of super-low-noise heterodyne spectroscopy systems for the terahertz band. The current developmental status of terahertz-band HEB mixer receivers and their applications for spectroscopy and astronomy with ground-based, airborne, and satellite telescopes are presented.

  • In situ Observation of Direct Electron Transfer Reaction of Cytochrome c Immobilized on ITO Electrode Modified with 10-carboxydecylphosphonic Acid by Slab Optical Waveguide Spectroscopy and Cyclic Voltammetry

    Naoki MATSUDA  Hirotaka OKABE  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    152-155

    To immobilize cytochrome $c$ (cyt.,$c$) on ITO electrode with keeping its direct electron transfer (DET) activity, 10-carboxydecylphosphonic acid (10-CDPA) self-assembled monolayer (SAM) film was formed on ITO electrode. After 100 times washing process with exchanging phosphate buffer saline solution in the cell to fresh one, extit{in situ} slab optical waveguide (SOWG) absorption spectral measurement proved that about 80% of cyt.,$c$ immobilized on 10-CDPA modified ITO electrode was adsorbed on ITO electrode. Additionally SOWG spectral change of cyt.,$c$ between oxidized and reduced forms was observed with setting the ITO electrode potential at 0.3 and $-$0.3,V vs. Ag/AgCl, respectively showing DET reaction between cyt.,$c$ and ITO electrode occurred. About 30% of a monolayer coverage was estimated from the coulomb amount in the surface area of oxidation and reduction peaks on cyclic voltammetry (CV) data. CV peak current maintained 84% for ITO electrode modified with 10-CDPA SAM film after 60,min continuous scan with 0.1,V/sec from 0.3 and $-$0.3,V vs. Ag/AgCl.

  • Surface Potential Measurement of Organic Multi-layered Films on Electrodes by Kelvin Probe Force Microscopy

    Nobuo SATOH  Shigetaka KATORI  Kei KOBAYASHI  Kazumi MATSUSHIGE  Hirofumi YAMADA  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    91-97

    We have investigated both the film thickness and surface potential of organic semiconductors deposited on two kinds of electrodes by the simultaneous observation with the dynamic force microscopy (DFM)/Kelvin-probe force microscope (KFM). To clarify the interfacial properties of organic semiconductor, we fabricated samples that imitated the organic light emitting diode (OLED) structure by depositing bis [$N,N '$-(1-naphthyl)-$N,N '$-phenyl] benzidine ($alpha$-NPD) and tris (8-hydroxyquinolinato) aluminum (Alq$_{3}$), respectively, on indium-tin-oxide (ITO) as anode and aluminum (Al) as cathode by the vacuum evaporation deposition using intersecting metal shadow masks. This deposition technique enables us to fabricate four different areas in the same substrate. The crossover area of the deposited thin films were measured by the DFM/KFM, the energy band diagrams were depicted and we considered that the charge behavior of the organic semiconductor depended on the material and the structure.

  • Chemical Reaction in Microdroplets with Different Sizes Containing CdSe/ZnS Quantum Dot and Organic Dye

    Takeshi FUKUDA  Tomokazu KURABAYASHI  Hikari UDAKA  Nayuta FUNAKI  Miho SUZUKI  Donghyun YOON  Asahi NAKAHARA  Tetsushi SEKIGUCHI  Shuichi SHOJI  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    123-126

    We report a real time method to monitor the chemical reaction in microdroplets, which contain an organic dye, 5(6)-carboxynaphthofluorescein and a CdSe/ZnS quantum dot using fluorescence spectra. Especially, the relationship between the droplet size and the reaction rate of the two reagents was investigated by changing an injection speed.

  • A Fully On-Chip, 6.66-kHz, 320-nA, 56ppm/°C, CMOS Relaxation Oscillator with PVT Variation Compensation Circuit

    Keishi TSUBAKI  Tetsuya HIROSE  Yuji OSAKI  Seiichiro SHIGA  Nobutaka KUROKI  Masahiro NUMA  

     
    PAPER

      Vol:
    E97-C No:6
      Page(s):
    512-518

    A fully on-chip CMOS relaxation oscillator (ROSC) with a PVT variation compensation circuit is proposed in this paper. The circuit is based on a conventional ROSC and has a distinctive feature in the compensation circuit that compensates for comparator's non-idealities caused by not only offset voltage, but also delay time. Measurement results demonstrated that the circuit can generate a stable clock frequency of 6.66kHz. The current dissipation was 320nA at 1.0-V power supply. The measured line regulation and temperature coefficient were 0.98%/V and 56ppm/°C, respectively.

  • Robust Surface Reconstruction in SEM Using Two BSE Detectors

    Deshan CHEN  Atsushi MIYAMOTO  Shun'ichi KANEKO  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E96-D No:10
      Page(s):
    2224-2234

    This paper describes a robust three-dimensional (3D) surface reconstruction method that can automatically eliminate shadowing errors. For modeling shadowing effect, a new shadowing compensation model based on the angle distribution of backscattered electrons is introduced. Further, it is modified with respect to some practical factors. Moreover, the proposed iterative shadowing compensation method, which performs commutatively between the compensation of image intensities and the modification of the corresponding 3D surface, can effectively provide both an accurate 3D surface and compensated shadowless images after convergence.

  • X-Ray Photoemission Study of SiO2/Si/Si0.55Ge0.45/Si Heterostructures

    Akio OHTA  Katsunori MAKIHARA  Seiichi MIYAZAKI  Masao SAKURABA  Junichi MUROTA  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    680-685

    An SiO2/Si-cap/Si0.55Ge0.45 heterostructure was fabricated on p-type Si(100) and strained silicon on insulator (SOI) substrates by low pressure chemical vapor deposition (LPCVD) and subsequent thermal oxidation in an O2 + H2 gas mixture. Chemical bonding features and valence band offsets in the heterostructures were evaluated by using high-resolution x-ray photoelectron spectroscopy (XPS) measurements and thinning the stack layers with a wet chemical solution.

  • Control of Interfacial Reaction of HfO2/Ge Structure by Insertion of Ta Oxide Layer

    Kuniaki HASHIMOTO  Akio OHTA  Hideki MURAKAMI  Seiichiro HIGASHI  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    674-679

    As means to control interface reactions between HfO2 and Ge(100), chemical vapor deposition (CVD) of ultrathin Ta-rich oxide using Tri (tert-butoxy) (tert-butylimido) tantalum (Ta-TTT) on chemically-cleaned Ge(100) has been conducted prior to atomic-layer controlled CVD of HfO2 using tetrakis (ethylmethylamino) hafnium (TEMA-Hf) and O3. The XPS analysis of chemical bonding features of the samples after the post deposition N2 annealing at 300 confirms the formation of TaGexOy and the suppression of the interfacial GeO2 layer growth. The energy band structure of HfO2/TaGexOy/Ge was determined by the combination of the energy bandgaps of HfO2 and TaGexOy measured from energy loss signals of O 1s photoelectrons and from optical absorption spectra and the valence band offsets at each interface measured from valence band spectra. From the capacitance-voltage (C-V) curves of Pt-gate MIS capacitors with different HfO2 thicknesses, the thickness reduction of TaGexOy with a relative dielectric constant of 9 is a key to obtain an equivalent SiO2 thickness (EOT) below 0.7 nm.

  • Characterization of Resistive Switching of Pt/Si-Rich Oxide/TiN System

    Motoki FUKUSIMA  Akio OHTA  Katsunori MAKIHARA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E96-C No:5
      Page(s):
    708-713

    We have fabricated Pt/Si-rich oxide (SiOx)/TiN stacked MIM diodes and studied an impact of the structural asymmetry on their resistive switching characteristics. XPS analyses show that a TiON interfacial layer was formed during the SiOx deposition on TiN by RF-sputtering in an Ar + O2 gas mixture. After the fabrication of Pt top electrodes on the SiOx layer, and followed by an electro-forming process, distinct bi-polar type resistive switching was confirmed. For the resistive switching from high to low resistance states so called SET process, there is no need to set the current compliance. Considering higher dielectric constant of TiON than SiOx, the interfacial TiON layer can contribute to regulate the current flow through the diode. The clockwise resistive switching, in which the reduction and oxidation (Red-Ox) reactions can occur near the TiN bottom electrode, shows lower RESET voltages and better switching endurance than the counter-clockwise switching where the Red-Ox reaction can take place near the top Pt electrode. The result implies a good repeatable nature of Red-Ox reactions at the interface between SiOx and TiON/TiN in consideration of relatively high diffusibility of oxygen atoms through Pt.

  • Orientation Imaging of Single Molecule at Various Ambient Conditions

    Toshiki YAMADA  Takahiro KAJI  Akira OTOMO  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    381-382

    After brief introduction of our new microscope unit with an immersion objective and ionic liquid used as a refractive index matching medium, in this paper, we describe the studies on dipole orientation imaging of single molecules under high vacuum conditions as one of the important applications of our microscope.

  • In situ Observation of Electron Transfer Kinetics of Cytochrome c Adsorbed on ITO Electrode with Applying Pulse Potential Step with Slab Optical Waveguide Spectroscopy

    Naoki MATSUDA  Hirotaka OKABE  

     
    BRIEF PAPER

      Vol:
    E96-C No:3
      Page(s):
    389-392

    In situ UV-vis. absorption spectra of cytochrome c adsorbed on ITO electrode was observed with slab optical waveguide spectroscopy combining pulse potential step (PPS) between 0.3 and -0.45 V vs. Ag/AgCl. The amount of cytochrome c adsorbed on ITO electrode was estimated from the amount of coulomb of the peaks in cyclic voltammogram to be about a monolayer coverage in this experimental condition. Spectral change between oxidized and reduced cytochrome c by PPS was finished in about 20 msec with phosphate buffer solution. The results strongly proved that SOWG spectroscopy should be effective for in situ observation of ET reaction kinetics of surface adsorbed molecules.

  • Microscopic Local Binary Pattern for Texture Classification

    Jiangping HE  Wei SONG  Hongwei JI  Xin YANG  

     
    PAPER-Image

      Vol:
    E95-A No:9
      Page(s):
    1587-1595

    This paper presents a Microscopic Local Binary Pattern (MLBP) for texture classification. The conventional LBP methods which rely on the uniform patterns discard some texture information by merging the nonuniform patterns. MLBP preserves the information by classifying the nonuniform patterns using the structure similarity at microscopic level. First, the nonuniform patterns are classified into three groups using the macroscopic information. Second, the three groups are individually divided into several subgroups based on the microscopic structure information. The experiments show that MLBP achieves a better result compared with the other LBP related methods.

  • Evaluation of a 2-Channel NIRS-Based Optical Brain Switch for Motor Disabilities' Communication Tools

    Kazuhiko SAGARA  Kunihiko KIDO  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Vol:
    E95-D No:3
      Page(s):
    829-834

    We have developed a portable NIRS-based optical BCI system that features a non-invasive, facile probe attachment and does not require muscle movement to control the target devices. The system consists of a 2-channel probe, a signal-processing unit, and an infrared-emission device, which measures the blood volume change in the participant's prefrontal cortex in a real time. We use the threshold logic as a switching technology, which transmits a control signal to a target device when the electrical waveforms exceed the pre-defined threshold. Eight healthy volunteers participated in the experiments and they could change the television channel or control the movement of a toy robot with average switching times of 11.5 ± 5.3 s and the hit rate was 83.3%. These trials suggest that this system provides a novel communication aid for people with motor disabilities.

21-40hit(133hit)