The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] RoADS(14hit)

1-14hit
  • 1-D and 2-D Beam Steering Arrays Antennas Fed by a Compact Beamforming Network for Millimeter-Wave Communication

    Jean TEMGA  Koki EDAMATSU  Tomoyuki FURUICHI  Mizuki MOTOYOSHI  Takashi SHIBA  Noriharu SUEMATSU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2023/04/11
      Vol:
    E106-B No:10
      Page(s):
    915-927

    In this article, a new Beamforming Network (BFN) realized in Broadside Coupled Stripline (BCS) is proposed to feed 1×4 and 2×2 arrays antenna at 28 GHZ-Band. The new BFN is composed only of couplers and phase shifters. It doesn't require any crossover compared to the conventional Butler Matrix (BM) which requires two crossovers. The tight coupling and low loss characteristics of the BCS allow a design of a compact and wideband BFN. The new BFN produces the phase differences of (±90°) and (±45°, ±135°) respectively in x- and y-directions. Its integration with a 1×4 linear array antenna reduces the array area by 70% with an improvement of the gain performance compared with the conventional array. The integration with a 2×2 array allows the realization of a full 2-D beam scanning. The proposed concept has been verified experimentally by measuring the fabricated prototypes of the BFN, the 1-D and 2-D patch arrays antennas. The measured 11.5 dBi and 11.3 dBi maximum gains are realized in θ0 = 14° and (θ0, φ0) = (45°,345°) directions respectively for the 1-D and 2-D patch arrays. The physical area of the fabricated BFN is only (0.37λ0×0.3λ0×0.08λ0), while the 1-D array and 2-D array antennas areas without feeding transmission lines are respectively (0.5λ0×2.15λ0×0.08λ0) and (0.9λ0×0.8λ0×0.08λ0).

  • A 2-D Beam Scanning Array Antenna Fed by a Compact 16-Way 2-D Beamforming Network in Broadside Coupled Stripline

    Jean TEMGA  Tomoyuki FURUICHI  Takashi SHIBA  Noriharu SUEMATSU  

     
    PAPER

      Pubricized:
    2023/03/28
      Vol:
    E106-B No:9
      Page(s):
    768-777

    A 2-D beam scanning array antenna fed by a compact 16-way 2-D beamforming network (BFN) designed in Broadside Coupled Stripline (BCS) is addressed. The proposed 16-way 2-D BFN is formed by interconnecting two groups of 4x4 Butler Matrix (BM). Each group is composed of four compact 4x4 BMs. The critical point of the design is to propose a simple and compact 4x4 BM without crossover in BCS to achieve a better transmission coefficient of the 16-way 2-D BFN with reduced size of merely 0.8λ0×0.8λ0×0.04λ0. Moreover, the complexity of the interface connection between the 2-D BFN and the 4x4 patch array antenna is reduced by using probe feeding. The 16-way 2-D BFN is able to produce the phase shift of ±45°, and ±135° in x- and y- directions. The 2-D BFN is easily integrated under the 4x4 patch array to form a 2-D phased array capable of switching 16 beams in both elevation and azimuth directions. The area of the proposed 2-D beam scanning array antenna module has been significantly reduced to 2λ0×2λ0×0.04λ0. A prototype operating in the frequency range of 4-6GHz is fabricated and measured to validate the concept. The measurement results agree well with the simulations.

  • Parameter Selection and Radar Fusion for Tracking in Roadside Units

    Kuan-Cheng YEH  Chia-Hsing YANG  Ming-Chun LEE  Ta-Sung LEE  Hsiang-Hsuan HUNG  

     
    PAPER-Sensing

      Pubricized:
    2023/03/03
      Vol:
    E106-B No:9
      Page(s):
    855-863

    To enhance safety and efficiency in the traffic environment, developing intelligent transportation systems (ITSs) is of paramount importance. In ITSs, roadside units (RSUs) are critical components that enable the environment awareness and connectivity via using radar sensing and communications. In this paper, we focus on RSUs with multiple radar systems. Specifically, we propose a parameter selection method of multiple radar systems to enhance the overall sensing performance. Furthermore, since different radars provide different sensing and tracking results, to benefit from multiple radars, we propose fusion algorithms to integrate the tracking results of different radars. We use two commercial frequency-modulated continuous wave (FMCW) radars to conduct experiments at Hsinchu city in Taiwan. The experimental results validate that our proposed approaches can improve the overall sensing performance.

  • Parameter Selection for Radar Systems in Roadside Units

    Chia-Hsing YANG  Ming-Chun LEE  Ta-Sung LEE  Hsiu-Chi CHANG  

     
    PAPER-Sensing

      Pubricized:
    2022/01/13
      Vol:
    E105-B No:7
      Page(s):
    885-892

    Intelligent transportation systems (ITSs) have been extensively studied in recent years to improve the safety and efficiency of transportation. The use of a radar system to enable the ITSs monitor the environment is robust to weather conditions and is less invasive to user privacy. Moreover, equipping the roadside units (RSUs) with radar modules has been deemed an economical and efficient option for ITS operators. However, because the detection and tracking parameters can significantly influence the radar system performance and the best parameters for different scenarios are different, the selection of appropriate parameters for the radar systems is critical. In this study, we investigated radar parameter selection and consequently proposes a parameter selection approach capable of automatically choosing the appropriate detection and tracking parameters for radar systems. The experimental results indicate that the proposed method realizes appropriate selection of parameters, thereby significantly improving the detection and tracking performance of radar systems.

  • Formal Verification-Based Redundancy Identification of Transition Faults with Broadside Scan Tests

    Hiroshi IWATA  Nanami KATAYAMA  Ken'ichi YAMAGUCHI  

     
    PAPER-Formal techniques

      Pubricized:
    2017/03/07
      Vol:
    E100-D No:6
      Page(s):
    1182-1189

    In accordance with Moore's law, recent design issues include shortening of time-to-market and detection of delay faults. Several studies with respect to formal techniques have examined the first issue. Using the equivalence checking, it is possible to identify whether large circuits are equivalent or not in a practical time frame. With respect to the latter issue, it is difficult to achieve 100% fault efficiency even for transition faults in full scan designs. This study involved proposing a redundant transition fault identification method using equivalence checking. The main concept of the proposed algorithm involved combining the following two known techniques, 1. modeling of a transition fault as a stuck-at fault with temporal expansion and 2. detection of a stuck-at fault by using equivalence checking tools. The experimental results indicated that the proposed redundant identification method using a formal approach achieved 100% fault efficiency for all benchmark circuits in a practical time even if a commercial ATPG tool was unable to achieve 100% fault efficiency for several circuits.

  • A Roadside Unit Based Hybrid Routing Protocol for Vehicular Ad Hoc Networks

    Chi Trung NGO  Hoon OH  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2400-2418

    The tree-based routing approach has been known as an efficient method for node mobility management and data packet transmission between two long-distance parties; however, its parameter adjustment must balance control overhead against the convergence speed of topology information according to node mobility. Meanwhile, location-based routing works more efficiently when the distance between the source and destination is relatively short. Therefore, this paper proposes a roadside unit (RSU) based hybrid routing protocol, called RSU-HRP that combines the strengths of both protocols while offsetting their weaknesses. In RSU-HRP, the tree construction is modified to take into account the link and route quality to construct a robust and reliable tree against high node mobility, and an optimized broadcast algorithm is developed to reduce control overhead induced by the advertisement message periodically sent from a roadside unit. In addition, the two routing methods are selectively used based on the computed distance in hops between a source and a destination. Simulation results show that RSU-HRP far outperforms TrafRoute in terms of packet delivery ratio, end-to-end delay, and control overhead in both Vehicle-to-Infrastructure and Vehicle-to-Vehicle communication models.

  • Broadside Coupling High-Temperature Superconducting Dual-Band Bandpass Filter

    Yuta TAKAGI  Kei SATOH  Daisuke KOIZUMI  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E96-C No:8
      Page(s):
    1033-1040

    This paper proposes a novel high-temperature superconducting dual-band bandpass filter (HTS-DBPF), that employs a broadside coupling structure, in which quarter-wavelength resonators are formed on opposite sides of each substrate. This structure provides a dual-band operation of the BPF and flexibility, in the sense of having a wide range in selecting two center passband frequencies of the HTS-DBPF. This paper employs the ratio of the lower and higher center passband frequencies, α, as a criterion for evaluating the flexibility. The obtained α ranges are from 1 to 4.7, which are the widest for DBPFs for mobile communications applications, to the best knowledge of the authors. This paper presents a 2.4-/2.9-GHz band HTS-DBPF, as an experimental example, using a YBCO film deposited on an MgO substrate. The measured frequency responses of the HTS-DBPF agree with the electromagnetic simulated results. Measurement and simulation results confirm that the proposed filter architecture is effective in configuring a DBPF that can set each center passband frequency widely.

  • Electrostatic Solution for Broadside-Coupled Striplines in a Shield

    Juncheol PARK  Dohoon KIM  Hyo Joon EOM  Sangbong JEON  

     
    LETTER-Antennas and Propagation

      Vol:
    E96-B No:1
      Page(s):
    325-328

    The electrostatic characteristics of broadside-coupled striplines in a shield are investigated with the mode-matching method. The Fourier series is employed to describe electrostatic potential distributions. Numerical results are shown for coupled transmission line cell applications.

  • Analysis of the Rate-Based Channel Access Prioritization for Drive-Thru Applications in the IEEE 802.11p WAVE

    Inhye KANG  Hyogon KIM  

     
    LETTER-Network

      Vol:
    E93-B No:6
      Page(s):
    1605-1607

    In this letter, we develop an analytical model for the drive-thru applications based on the IEEE 802.11p WAVE. The model shows that prioritizing the bitrates via the 802.11e EDCA mechanism leads to significant throughput improvement.

  • Proximity Coupled Interconnect Using Broadside Coupled Composite Right/Left-Handed Transmission Line

    Naobumi MICHISHITA  Akiyoshi ABE  Yoshihide YAMADA  Anthony LAI  Tatsuo ITOH  

     
    PAPER

      Vol:
    E92-C No:9
      Page(s):
    1150-1156

    In this paper, the feasibility of composite right/left-handed transmission lines for realizing proximity coupled interconnects is reported. The proposed interconnects' resonant length can be miniaturized due to the zeroth order resonance supported by a composite right/left-handed transmission line resonator. In addition, the proposed interconnects can achieve broadside coupling because the zeroth order resonance occurs in the fast-wave region. Simulated and measured electric field distributions are shown to explain the broadside coupling phenomenon. To validate the arbitrary size and broadside coupling of the proposed interconnects, simulated and measured transmission characteristics are presented. The results show that low insertion loss can be achieved by using single and double broadside coupling between interconnects.

  • A Strip Line Broadside Hybrid Coupler Tolerant to Displacement Error and Thickness Variation in Multi-Layered LTCC Substrate

    Takeshi YUASA  Yukihiro TAHARA  Hideyuki OH-HASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:10
      Page(s):
    1684-1689

    A strip line broadside hybrid coupler which is tolerant to manufacturing errors in a multi-layered LTCC substrate has been developed. The tolerance to a displacement error and a thickness variation in the multi-layered LTCC substrate can be achieved by using the tandem arrangement of diagonally shifted coupled lines with adjacent ground walls. It has been demonstrated that the coupling deviation from designed characteristics in our proposed hybrid coupler is very small.

  • The Study of Maglev Train Control and Diagnosis Networks Based on Role Automation Decentralization

    Zhigang LIU  Qi WANG  Yongdong TAN  

     
    PAPER

      Vol:
    E91-D No:9
      Page(s):
    2285-2292

    The control and diagnosis networks in Maglev Train are the most important parts. In the paper, the control and diagnosis network structures are discussed, and the disadvantages of them are described and analyzed. In virtue of role automation decentralized system (RoADS), some basic ideas of RoADS are applied in new network. The structure, component parts and application of new network are proposed, designed and discussed in detail. The comparison results show that new network not only embodies some RoADS' ideas but also better meets the demands of control and diagnosis networks in Maglev Train.

  • An Ultra-Wideband (UWB) Bandpass Filter Using Broadside-Coupled Structure and Lumped-Capacitor-Loaded Shunt Stub Resonators

    Keren LI  Yasuhisa YAMAMOTO  Daisuke KURITA  Osamu HASHIMOTO  

     
    PAPER-Passive Devices/Circuits

      Vol:
    E90-C No:9
      Page(s):
    1736-1742

    This paper presents an ultra-wideband (UWB) bandpass filter using a combination of broadside-coupled structure and lumped-capacitor-loaded shunt stub resonator. The broadside-coupled microstrip-to-coplanar waveguide structure provides an ultra-wide bandpass filtering operation and keeps a good stopband at lower frequencies from DC at the same time. The lumped-capacitor-loaded shunt stub resonator creates two transmission zeros (attenuation poles which can be located at the outsides of the two bandedges of the UWB bandpass filter to improve the out-band performance by selecting a suitable combination of the length of the shunt stubs and the capacitance of the loaded chip capacitors. The filter was designed based on electromagnetic simulation for broadside-coupled structure, microwave circuit simulation and experiments for determining the transmission zeros. The filter was fabricated on a one-layer dielectric substrate. The measured results demonstrated that the developed UWB bandpass filter has good performance: low insertion loss about 0.46 dB and low group delay about 0.26 ns at the center of the passband and very flat over the whole passband, and less than -10 dB reflection over the passband. The implemented transmission zeros, particularly at the low frequency end, dramatically improved the out-band performance, leading the filter satisfy the FCC's spectrum mask not only for indoor but also for outdoor applications. These poles improved also the skirt performance at both bandedges of the filter. A lowpass filter has been also introduced and integrated with the proposed bandpass filter to have a further improvement of the out-band performance at the high frequency end. The filters integrated with lowpass section exhibit excellent filter performance: almost satisfying the FCC's spectrum mask from DC to 18 GHz. The developed UWB bandpass filter has a compact size of 4 cm1.5 cm, or 4.8 cm1.5 cm with lowpass section implemented.

  • Radio Multi-Path Propagation Measurement and Analysis at 2.4 GHz at Roadside

    Jongtaek OH  

     
    LETTER-Antenna and Propagation

      Vol:
    E85-B No:11
      Page(s):
    2551-2553

    Short range communication between roadside equipment and on-board equipment is very important for ITS (Intelligent Transport System). In this paper, for reliable roadside communication, the radio multi-path propagation at 2.4 GHz at roadside was measured and analyzed.