The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

2001-2020hit(4570hit)

  • Multiple Random Beams Selection Exploiting Chordal Distances

    Lan TANG  Pengcheng ZHU  Xiaohu YOU  Yan WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:11
      Page(s):
    3722-3726

    We consider a time-division multiple access (TDMA) transmission scheme in MIMO broadcast channels. To cope with the fairness issue in heterogeneous networks with slow fading, an opportunistic scheduling algorithm based on the channel eigen-direction is investigated. In the system with sparse users, the mismatch between a random beamforming vector and the principle eigenvector of the channel incurs a throughput penalty. To reduce such a throughput loss, a multiple random beams selection (MRBS) scheme exploiting chordal distances is proposed. Two feedback schemes (unquantized or quantized chordal distances) are considered. The closed-form throughput expressions of the proposed schemes are derived.

  • Improved Estimation of the Number of Competing Stations Using Scaled Unscented Filter in an IEEE 802.11 Network

    Jang Sub KIM  Ho Jin SHIN  Dong Ryeol SHIN  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E91-B No:11
      Page(s):
    3688-3694

    In this paper, a new methodology to estimate the number of competing stations in an IEEE 802.11 network, is proposed. Due to the nonlinear nature of the measurement model, an iterative nonlinear filtering algorithm, called the Scaled Unscented Filter (SUF), is employed. The SUF can provide a superior alternative to nonlinear filtering than the conventional Extended Kalman Filter (EKF), since it avoids errors associated with linearization. This approach demonstrates both high accuracy in addition to prompt reactivity to changes in the network occupancy status. In particular, the proposed algorithm shows superior performance in non saturated conditions when compared to the EKF. Numerical results demonstrate that the proposed algorithm provides a more viable method for estimation of the number of competing stations in an IEEE 802.11 network, than estimators based on the EKF.

  • Automatic Generation of User Manuals without Automation Surprises for Human-Machine Systems Modeled by Discrete Event Systems

    Toshimitsu USHIO  Satoshi TAKAHASHI  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3237-3244

    In human-machine systems, a user gets abstracted information of a machine via an interface and operates it referring to a manual. If a manual has an erroneous description leading to automation surprises, the user may be lost in his/her operations so that he/she may make a serious human error. In this paper, we propose an algorithm for generating a manual by which automation surprises never occur. We model the machine and the interface as a discrete event system and a mapping from machine's state to a display of the interface, respectively. First, we represent a manual as a finite language and model behavior of the system operated by the user with the manual as a tree called an operational tree. Next, we characterize three automation surprises using the tree. Finally, we propose an algorithm for generating an operational tree by which the machine reaches a target state.

  • Full-Index-Embedding Patchwork Algorithm for Audio Watermarking

    Hyunho KANG  Koutarou YAMAGUCHI  Brian KURKOSKI  Kazuhiko YAMAGUCHI  Kingo KOBAYASHI  

     
    LETTER-Application Information Security

      Vol:
    E91-D No:11
      Page(s):
    2731-2734

    For the digital watermarking patchwork algorithm originally given by Bender et al., this paper proposes two improvements applicable to audio watermarking. First, the watermark embedding strength is psychoacoustically adapted, using the Bark frequency scale. Second, whereas previous approaches leave the samples that do not correspond to the data untouched, in this paper, these are modified to reduce the probability of misdetection, a method called full index embedding. In simulations, the proposed combination of these two proposed methods has higher resistance to a variety of attacks than prior algorithms.

  • Cross-Layer Design for Low-Power Wireless Sensor Node Using Wave Clock

    Takashi TAKEUCHI  Yu OTAKE  Masumi ICHIEN  Akihiro GION  Hiroshi KAWAGUCHI  Chikara OHTA  Masahiko YOSHIMOTO  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3480-3488

    We propose Isochronous-MAC (I-MAC) using the Long-Wave Standard Time Code (so called "wave clock"), and introduce cross-layer design for a low-power wireless sensor node with I-MAC. I-MAC has a periodic wakeup time synchronized with the actual time, and thus we take the wave clock. However, a frequency of a crystal oscillator varies along with temperature, which incurs a time difference among nodes. We present a time correction algorithm to address this problem, and shorten the time difference. Thereby, the preamble length in I-MAC can be minimized, which saves communication power. For further power reduction, a low-power crystal oscillator is also proposed, as a physical-layer design. We implemented I-MAC on an off-the-shelf sensor node to estimate the power saving, and verified that the proposed cross-layer design reduces 81% of the total power, compared to Low Power Listening.

  • Multi-Floor Semantically Meaningful Localization Using IEEE 802.11 Network Beacons

    Uzair AHMAD  Brian J. D'AURIOL  Young-Koo LEE  Sungyoung LEE  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3450-3460

    This paper presents a new methodology, Beacognition, for real-time discovery of the associations between a signal space and arbitrarily defined regions, termed as Semantically Meaningful Areas (SMAs), in the corresponding physical space. It lets the end users develop semantically meaningful location systems using standard 802.11 network beacons as they roam through their environment. The key idea is to discover the unique associations using a beacon popularity model. The popularity measurements are then used to localize the mobile devices. The beacon popularity is computed using an election' algorithm and a new recognition model is presented to perform the localization task. We have implemented such a location system in a five story campus building. The comparative results show significant improvement in localization by achieving on average 83% SMA and 88% Floor recognition rate in less than one minute per SMA training time.

  • Research of Practical Indoor Guidance Platform Using Fluorescent Light Communication

    Xiaohan LIU  Hideo MAKINO  Suguru KOBAYASHI  Yoshinobu MAEDA  

     
    PAPER

      Vol:
    E91-B No:11
      Page(s):
    3507-3515

    This article presents an indoor positioning and communication platform, using fluorescent lights. We set up a practical implementation of a VLC (Visible Light Communication) system in a University building. To finalize this work, it is important that we analyze the properties of the reception signal, especially the length of the data string that can be received at different walking speed. In this paper, we present a model and a series of formulae for analyzing the relationship between positioning signal availability and other important parameters, such as sensor angle, walking speed, data transmission rate, etc. We report a series of real-life experiments using VLC system and compare the results with those generated by the formula. The outcome is an improved design for determination of the reception area with more than 97% accurate signals, and an optimal transmission data length, and transmission rate.

  • K-Band Second Harmonic Oscillator Using Mutually Synchronized Gunn Diodes Embedded on Slot Line Resonators

    Kengo KAWASAKI  Takayuki TANAKA  Masayoshi AIKAWA  

     
    PAPER

      Vol:
    E91-C No:11
      Page(s):
    1751-1756

    This paper represents a novel second harmonic power combining oscillator using mutually synchronized Gunn diodes embedded on slot line resonators. A both-sided MIC technology is adopted in the oscillator. The oscillator consists of Gunn diodes, slot line resonators and microstrip lines. By embedding Gunn diodes on the slot line resonators, the harmonic RF signal can be generated very easily. The microstrip lines are used for the power combining output circuit. This oscillator has advantages such as easy circuit design, simple circuit configuration and miniaturization of the circuit size. The second harmonic oscillator is designed and fabricated in K-Band. The output power is +5.75 dBm at the design frequency of 19.0 GHz (2f0) with the phase noise of -111.7 dBc/Hz at the offset frequency of 1 MHz. Excellent suppression of the undesired fundamental frequency signal (f0) of -39 dBc is achieved.

  • Adaptive Fair Resource Allocation for Energy and QoS Trade-Off Management

    Fumiko HARADA  Toshimitsu USHIO  Yukikazu NAKAMOTO  

     
    PAPER

      Vol:
    E91-A No:11
      Page(s):
    3245-3252

    In real-time embedded systems, there is requirement for adapting both energy consumption and Quality of Services (QoS) of tasks according to their importance. This paper proposes an adaptive power-aware resource allocation method to resolve a trade-off between the energy consumption and QoS levels according to their importance with guaranteeing fairness. The proposed resource allocator consists of two components: the total resource optimizer to search for the optimal total resource and QoS-fairness-based allocator to allocate resource to tasks guaranteeing the fairness. These components adaptively achieve the optimal resource allocation formulated by a nonlinear optimization problem with the time complexity O(n) for the number of tasks n even if tasks' characteristics cannot be identified precisely. The simulation result shows that the rapidness of the convergence of the resource allocation to the optimal one is suitable for real-time systems with large number of tasks.

  • Lossless-by-Lossy Coding for Scalable Lossless Image Compression

    Kazuma SHINODA  Hisakazu KIKUCHI  Shogo MURAMATSU  

     
    PAPER-Image

      Vol:
    E91-A No:11
      Page(s):
    3356-3364

    This paper presents a method of scalable lossless image compression by means of lossy coding. A progressive decoding capability and a full decoding for the lossless rendition are equipped with the losslessly encoded bit stream. Embedded coding is applied to large-amplitude coefficients in a wavelet transform domain. The other wavelet coefficients are encoded by a context-based entropy coding. The proposed method slightly outperforms JPEG-LS in lossless compression. Its rate-distortion performance with respect to progressive decoding is close to that of JPEG2000. The spatial scalability with respect to resolution is also available.

  • Complexity Oscillations in Random Reals

    ChenGuang LIU  Kazuyuki TANAKA  

     
    LETTER-Complexity Theory

      Vol:
    E91-D No:10
      Page(s):
    2517-2518

    The C-oscillation due to Martin-Löf shows that {α| ∀ n [C(α n)≥ n-O(1)]=, which also follows {α| ∀ n [K(α n)≥ n+K(n)-O(1)]=. By generalizing them, we show that there does not exist a real α such that ∀ n (K(α n)≥ n+λ K(n)-O(1)) for any λ>0.

  • Generalized Scalar Multiplication Secure against SPA, DPA, and RPA

    Atsuko MIYAJI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:10
      Page(s):
    2833-2842

    In the execution on a smart card, elliptic curve cryptosystems have to be secure against side channel attacks such as the simple power analysis (SPA), the differential power analysis (DPA), and the refined power analysis (RPA), and so on. MMM-algorithm proposed by Mamiya, Miyaji, and Morimoto is a scalar multiplication algorithm secure against SPA, DPA, and RPA, which can decrease the computational complexity by increasing the size of a pre-computed table. However, it provides only 4 different cases of pre-computed tables. From the practical point of view, a wider range of time-memory tradeoffs is usually desired. This paper generalizes MMM-algorithm to improve the flexibility of tables as well as the computational complexity. Our improved algorithm is secure, efficient and flexible for the storage size.

  • UWB Localization for NLOS under Indoor Multipath Channel: Scheme and TOA Estimation

    Zhu XIAO  Ke-Chu YI  Bin TIAN  Yong-Chao WANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:10
      Page(s):
    3391-3394

    This letter proposes a UWB signaling localization scheme for indoor multipath channel. It demonstrates that the proposed method does not require LOS path (LP) and is suitable for severe non line-of-sight (NLOS) condition. A low-complexity TOA estimation algorithm, the strongest path (SP) detection by convolution, is designed, which is easier to implement than the LP detection since it dispenses with the process of threshold setting. Experiments under NLOS channels in IEEE.802.15.4a are conducted and the localization influences due to the algorithm parameters are discussed. The results prove the feasibility of the proposed localization scheme under the indoor multipath NLOS environment.

  • Gramian-Preserving Frequency Transformation for Linear Discrete-Time State-Space Systems

    Shunsuke KOSHITA  Satoru TANAKA  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3014-3021

    This paper proposes the Gramian-preserving frequency transformation for linear discrete-time state-space systems. In this frequency transformation, we replace each delay element of a discrete-time system with an allpass system that has a balanced realization. This approach can generate transformed systems that have the same controllability/observability Gramians as those of the original system. From this result, we show that the Gramian-preserving frequency transformation gives us transformed systems with different magnitude characteristics, but with the same structural property with respect to the Gramians as that of the original system. This paper also presents a simple method for realization of the Gramian-preserving frequency transformation. This method makes use of the cascaded normalized lattice structure of allpass systems.

  • Schedulability Analysis of Periodic and Sporadic Tasks Using a Timed Discrete Event Model with Memorable Events

    Jung-Min YANG  Seong-Jin PARK  

     
    LETTER-Systems and Control

      Vol:
    E91-A No:10
      Page(s):
    3076-3079

    In a real-time system, when the execution of a task is preempted by another task, the interrupted task falls into a blocked state. Since its re-execution begins from the interrupted point generally, the task's timer containing the remaining time until its completion should be maintained in the blocked state. This is the reason for introducing the notion of memorable events in this paper. We present a new timed discrete event model (TDEM) that adds the memorable events to the TDEM framework of Brandin and Wonham (1994). Using supervisory control theory upon the proposed TDEM, we analyze the schedulability of preemptable periodic and sporadic tasks executing on a uniprocessor.

  • Integration of Multiple Organic Light Emitting Diodes and a Lens for Emission Angle Control

    Fanny RAHADIAN  Tatsuya MASADA  Ichiro FUJIEDA  

     
    INVITED PAPER

      Vol:
    E91-C No:10
      Page(s):
    1536-1541

    We propose to integrate a single lens on top of multiple OLEDs. Angular distribution of the light emitted from the lens surface is altered by turning on the OLEDs selectively. We can use such a light source as a backlight for a liquid crystal display to switch its viewing angle range and/or to display multiple images in different directions. Pixel-level integration would allow one to construct an OLED display with a similar emission angle control.

  • Analysis of a Multi-Oscillated Current Resonant Type DC-DC Converter

    Osamu MATSUO  Hirofumi MATSUO  Yoichi ISHIZUKA  Hiroyuki OTA  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E91-B No:10
      Page(s):
    3307-3312

    This paper presents the analysis of a new multi-oscillated current resonant type DC-DC converter. Current resonant converters have several remarkable features such as high efficiency, small size, low cost and low noise, and are frequently employed in many portable electronic systems such as personal computers, cellular phones and flat panel displays. The current resonant type converter generally employs pulse frequency modulation for constant voltage control in the output. For this reason, the magnetizing current through the converter not only causes a power loss under a light load, but also a loss during stand-by. Therefore, this type of converter has a problem in that the required smaller size cannot be achieved, because an auxiliary source is necessary for stand-by. In order to solve these problems, a new current resonant type power supply is proposed in which two driving methods are employed. In these driving methods, one MOSFET as a main switch is driven by an auxiliary winding of the transformer and another MOSFET as a main switch is driven by the driving IC with a low withstand voltage. Good agreement of the observed and simulated waveforms was confirmed. In addition, eight distinct states and four distinct operating modes, which compose of the sequence of states, were clarified by experimental and simulated analysis.

  • Variable-Focus Liquid Crystal Lenses Used in Imaging Systems as Focusing Elements

    Mao YE  Bin WANG  Satoshi YANASE  Susumu SATO  

     
    INVITED PAPER

      Vol:
    E91-C No:10
      Page(s):
    1599-1603

    Liquid crystal (LC) lenses that have hole-patterned electrodes and are driven by two voltages used as imaging devices are reported. Two different LC lenses are applied in image formation systems. One LC lens is used with a polarizer in a relay lens scope, and another LC lens that is polarization independent is used in a TV lens. Both LC lenses play roles of focusing elements in lens systems; objects are separately brought into focus by the LC lenses. Very sharp black-and-white and color images are formed by the systems.

  • A Nonlinear Piecewise Scheme for Non-uniformity Correction in IRFPA

    Shao-sheng DAI  Tian-qi ZHANG  

     
    LETTER-Electromagnetic Theory

      Vol:
    E91-C No:10
      Page(s):
    1698-1701

    A nonlinear piecewise scheme for non-uniformity correction in infrared focal plane arrays (IRFPA) is presented. In this method, utilizing the nonlinear piecewise scheme of detector response has extended the larger dynamic range of IRFPA response and the higher correcting accuracy than the non-uniformity correction algorithms based on linear response model of IRFPA detector. Based on the principle of this method, the mathematical model is established. At last experimental results are given out. The results show that it has higher correction precision, fewer calculations, and is easier to implement real-time non-uniformity correction of IRFPA by hardware circuit.

  • A Nearly Perfect Total-Field/Scattered-Field Boundary for the One-Dimensional CIP Method

    Yoshiaki ANDO  Hiroyuki SAITO  Masashi HAYAKAWA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E91-C No:10
      Page(s):
    1677-1683

    A total-field/scattered-field (TF/SF) boundary which is commonly used in the finite-difference time-domain (FDTD) method to illuminate scatterers by plane waves, is developed for use in the constrained interpolation profile (CIP) method. By taking the numerical dispersion into account, the nearly perfect TF/SF boundary can be achieved, which allows us to calculate incident fields containing high frequency components without fictitious scattered fields. First of all, we formulate the TF/SF boundary in the CIP scheme. The numerical dispersion relation is then reviewed. Finally the numerical dispersion is implemented in the TF/SF boundary to estimate deformed incident fields. The performance of the nearly perfect TF/SF boundary is examined by measuring leaked fields in the SF region, and the proposed method drastically diminish the leakage compared with the simple TF/SF boundary.

2001-2020hit(4570hit)