The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

2061-2080hit(4570hit)

  • The Relationship between Voltage and Duration of Short-Time Arc Generated by Slowly Breaking Silver Contact

    Yoshiki KAYANO  Hikaru MIURA  Kazuaki MIYANAGA  Hiroshi INOUE  

     
    LETTER-Arc Discharge & Related Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1230-1232

    Arc discharge generated by breaking electrical contact is considered as a main source of an undesired electromagnetic (EM) noise. To clarify mechanism of generation of the EM noise, feature extraction of bridge and short-time arc waveforms generated by slowly breaking Ag contact was discussed experimentally. The short-duration time arc before the ignition of the continuous metallic arc discharge was observed. The highest probability density voltage is defined as short-arc sustainable voltage (SASV). The relationship between SASV and duration of short-time arc was quantified experimentally. It is revealed that as the arc voltage of the short-time arc is higher, its duration becomes longer.

  • Relationship between Arc Duration and Motion of Arc Spots for Break Arcs of Ag and Ag/ZnO Electrical Contacts

    Junya SEKIKAWA  Takumi SUGIO  Takayoshi KUBONO  

     
    PAPER-Arc Discharge & Related Phenomena

      Vol:
    E91-C No:8
      Page(s):
    1249-1254

    Break arcs are generated in a DC 42 V-10 A resistive circuit. The contact material is Ag or Ag/ZnO. The number of break operations is two hundreds for each contact material. The motion of break arcs is observed with a high-speed camera. Relationship between the dependence of arc duration on the number of operations and the motion of arc spots is investigated. The following results are shown. For Ag contacts the arc duration is almost constant independent to the number of break operations. For Ag/ZnO contacts, on the other hand, the arc duration changes irregularly to short (59 ms) or long (69 ms) arc-duration after 30th break operation. The moving range of arc spots on contact surfaces is broad for the case of short arc-duration and is narrow for the case of long arc-duration. The cause of the results for Ag/ZnO contacts is considered that the difference of the boiling points of Ag and ZnO leads to the porous structure on the contact surface.

  • Quadrature Hartley VCO and Injection-Locked Frequency Divider

    Sheng-Lyang JANG  Chia-Wei CHANG  Sheng-Chien WU  Chien-Feng LEE  Lin-yen TSAI  Jhin-Fang HUANG  

     
    LETTER-Electronic Circuits

      Vol:
    E91-C No:8
      Page(s):
    1371-1374

    Novel low phase noise quadrature voltage-controlled oscillator (QVCO) and quadrature injection locked frequency divider (QILFD) with two coupled Hartley VCOs are proposed and implemented using the standard TSMC 0.18 µm CMOS 1P6M process. The QVCO employs pMOS as the core to reduce the up-conversion of low-frequency device noise to RF phase noise. It uses super-harmonic coupling technique to couple two differential Hartley VCOs and four small-size coupling transistors to set the directivity of quadrature output phases. At the 1.7 V supply voltage, the output phase noise of the QVCO is -124 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 4.12 GHz, and the figure of merit is -185 dBc/Hz. At the supply voltage of 1.7 V, the total power consumption is 13.1 mW. At the supply voltage of 1.5 V, the tuning range of the free-running QILFD is from 2.05 GHz to 2.36 GHz, about 310 MHz, and the locking range of the ILFD is from 3.99 to 5.19 GHz, about 1.20 GHz, at the injection signal power of 0 dBm.

  • Low-Capacitance and Fast Turn-on SCR for RF ESD Protection

    Chun-Yu LIN  Ming-Dou KER  Guo-Xuan MENG  

     
    PAPER

      Vol:
    E91-C No:8
      Page(s):
    1321-1330

    With the smaller layout area and parasitic capacitance under the same electrostatic discharge (ESD) robustness, silicon-controlled rectifier (SCR) has been used as an effective on-chip ESD protection device in radio-frequency (RF) IC. In this paper, SCR's with the waffle layout structures are studied to minimize the parasitic capacitance and the variation of the parasitic capacitance within ultra-wide band (UWB) frequencies. With the reduced parasitic capacitance and capacitance variation, the degradation on UWB RF circuit performance can be minimized. Besides, the fast turn-on design on the low-capacitance SCR without increasing the I/O loading capacitance is investigated and applied to an UWB RF power amplifier (PA). The PA co-designed with SCR in the waffle layout structure has been fabricated. Before ESD stress, the RF performances of the ESD-protected PA are as well as that of the unprotected PA. After ESD stress, the unprotected PA is seriously degraded, whereas the ESD-protected PA still keeps the performances well.

  • Scalable and Systolic Montgomery Multipliers over GF(2m)

    Chin-Chin CHEN  Chiou-Yng LEE  Erl-Huei LU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E91-A No:7
      Page(s):
    1763-1771

    This work presents a novel scalable and systolic Montgomery's algorithm in GF(2m). The proposed algorithm is based on the Toeplitz matrix-vector representation, which obtains the scalable and systolic Montgomery multiplier in a flexible manner, and can adapt to the required precision. Analytical results indicate that the proposed multiplier over the generic field of GF(2m) has a latency of d+n(2n+1), where n = m / d , and d denotes the selected digital size. The latency is reduced to d+n(n+1) clock cycles when the field is constructed from generalized equally-spaced polynomials. Since the selected digital size is d ≥5 bits, the proposed architectures have lower time-space complexity than traditional digit-serial multipliers. Moreover, the proposed architectures have regularity, modularity and local interconnect ability, making them very suitable for VLSI implementation.

  • Fuzzy Controlled Individual Cell Equalizers for Lithium-Ion Batteries

    Yuang-Shung LEE  Ming-Wang CHENG  Shun-Ching YANG  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E91-B No:7
      Page(s):
    2380-2392

    A fuzzy logic control battery equalizing controller (FLC-BEC) is adopted to control the cell voltage balancing process for a series connected Li-ion battery string. The proposed individual cell equalizer (ICE) is based on the bidirectional Cuk converter operated in the discontinuous capacitor voltage mode (DCVM) to reduce the switching loss and improve equalization efficiency. The ICE with the proposed FLC-BEC can reduce the equalizing time, maintain safe operations during the charge/discharge state and increase the battery string capacity.

  • On NoC Bandwidth Sharing for the Optimization of Area Cost and Test Application Time

    Fawnizu Azmadi HUSSIN  Tomokazu YONEDA  Hideo FUJIWARA  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:7
      Page(s):
    1999-2007

    Current NoC test scheduling methodologies in the literature are based on a dedicated path approach; a physical path through the NoC routers and interconnects are allocated for the transportation of test data from an external tester to a single core during the whole duration of the core test. This approach unnecessarily limits test concurrency of the embedded cores because a physical channel bandwidth is typically larger than the scan rate of any core-under-test. We are proposing a bandwidth sharing approach that divides the physical channel bandwidth into multiple smaller virtual channel bandwidths. The test scheduling is performed under the objective of co-optimizing the wrapper area cost and the resulting test application time using two complementary NoC wrappers. Experimental results showed that the area overhead can be optimized (to an extent) without compromising the test application time. Compared to other NoC scheduling approaches based on dedicated paths, our bandwidth sharing approach can reduce the test application time by up to 75.4%.

  • Guaranteeing QoE in Audio-Video Transmission by IEEE 802.11e HCCA

    Zul Azri BIN MUHAMAD NOH  Takahiro SUZUKI  Shuji TASAKA  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1551-1561

    This paper studies packet scheduling schemes with QoE (user-level QoS) guarantee for audio-video transmission in a wireless LAN with HCF controlled channel access (HCCA) of the IEEE 802.11e MAC protocol. We first propose the static scheduling (SS) scheme, which grants adjustable transmission opportunity (TXOP) duration for constant bit rate (CBR) traffic. The SS scheme can determine the minimum TXOP duration capable of guaranteeing high QoE; it can maximize the number of admitted flows. As the burstiness of variable bit rate (VBR) traffic cannot be absorbed by the SS scheme, we also propose the multimedia priority dynamic scheduling (MPDS) scheme, which can absorb the burstiness through allocating additional TXOP duration. We then compare the SS scheme, the MPDS scheme, and the reference scheduler (TGe scheme) in terms of application-level QoS and user-level QoS (QoE). Numerical results show that in the SS scheme, the QoE can be kept relatively higher even when the TXOP duration is reduced in the case of video with the I picture pattern; this implies that more flows can be admitted. In the case of video with the IPPPPP picture pattern, which has the VBR characteristic more remarkably, reducing the TXOP duration according to the SS scheme will deteriorate the QoS level. In this case, the MPDS scheme performs better when the number of multimedia stations is small. However, the performance of the MPDS scheme deteriorates with the increase of the number of multimedia stations, though the results are comparable to or even better than those of the SS and TGe schemes.

  • An Efficient Scheduling Scheme for Assigning Transmission Opportunity in QoS-Guaranteed Wireless LAN

    Shigeaki TAGASHIRA  Masahiro YAMANE  Satoshi FUJITA  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1562-1569

    The IEEE 802.11e standard defines several important techniques that guarantee the quality of service (QoS) of multimedia communications in wireless LAN applications. A key technique introduced in the standard is an efficient media access control based on the Hybrid Coordination Function (HCF), which assigns an appropriate transmission opportunity (TXOP) to each flow for satisfying several requirements on the flow, such as delay bound and communication bandwidth. Although the simple scheduler designed in HCF could provide an efficient tool to guarantee the QoS in wireless LAN applications, it has a serious drawback, wherein a useless bandwidth assignment frequently occurs. Such assignments occur primarily due to a limitation of the scheme, wherein all the flows share the same service interval (SI). In this paper, we propose a new scheduling scheme that associates each flow with its own SI according to the hardness of the required SI. The effect of this approach is experimentally evaluated by simulation, the results of which indicate that the number of admitted flows and network resource utilization increase due to the proposed scheme.

  • Fabrication and Characterization of Active and Sequential Circuits Utilizing Schottky-Wrap-Gate-Controlled GaAs Hexagonal Nanowire Network Structures

    Hong-Quan ZHAO  Seiya KASAI  Tamotsu HASHIZUME  Nan-Jian WU  

     
    PAPER-Emerging Devices

      Vol:
    E91-C No:7
      Page(s):
    1063-1069

    For realization of hexagonal BDD-based digital systems, active and sequential circuits including inverters, flip flops and ring oscillators are designed and fabricated on GaAs-based hexagonal nanowire networks controlled by Schottky wrap gates (WPGs), and their operations are characterized. Fabricated inverters show comparatively high transfer gain of more than 10. Clear and correct operation of hexagonal set-reset flip flops (SR-FFs) is obtained at room temperature. Fabricated hexagonal D-type flip flop (D-FF) circuits integrating twelve WPG field effect transistors (FETs) show capturing input signal by triggering although the output swing is small. Oscillatory output is successfully obtained in a fabricated 7-stage hexagonal ring oscillator. Obtained results confirm that a good possibility to realize practical digital systems can be implemented by the present circuit approach.

  • Improvement of Beam Scanning Characteristics of a Dielectric Lens Antenna by Array Feeds

    Yousuke TAJIMA  Yoshihide YAMADA  

     
    PAPER

      Vol:
    E91-A No:7
      Page(s):
    1616-1624

    In the Intelligent Transportation System, millimeter waves are used and antennas are required beam scanning ability. In the millimeter wave operation, a lens antenna is one of the prominent candidates which achieves wide angle beam scanning. Wide angle scanning can be achieved by introducing Abbe sine condition to lens surface shaping. Authors designed the shaped lens antenna that could achieve beam scanning 30. The narrow beam widths were maintained on the scanning plane. However, the beam widths were broadened on the transverse plane and large gain reduction was appeared. It was clarified that the reason of this beam deterioration was due to the phase delay on the antenna aperture. In this paper, an array feed composed of a group of rectangular horns is employed to compensate the phase delay on the antenna aperture. In designing the array feed, because there were no examples of phase radiation pattern synthesis, a new radiation pattern synthesis method is studied. Ability of the weighting matrix contained in the Least Mean Square synthesis method is paid attention. Adequate weighting matrix is found out. Satisfactory phase radiation pattern that can compensate the phase delay and an adequate amplitude radiation pattern are achieved. As a result, the improvement of scanned beam widths and antenna gains through the array feed are ensured. And adequate horn arrangements of the array feed for improving scanned beam are clarified. Moreover, in order to examine the realization of an actual array feed, the exact electromagnetic simulation is conducted. The validity of the radiation pattern synthesis is clarified.

  • Skew-Frobenius Maps on Hyperelliptic Curves

    Shunji KOZAKI  Kazuto MATSUO  Yasutomo SHIMBARA  

     
    LETTER-Cryptography and Information Security

      Vol:
    E91-A No:7
      Page(s):
    1839-1843

    Scalar multiplication methods using the Frobenius maps are known for efficient methods to speed up (hyper)elliptic curve cryptosystems. However, those methods are not efficient for the cryptosystems constructed on fields of small extension degrees due to costs of the field operations. Iijima et al. showed that one can use certain automorphisms on the quadratic twists of elliptic curves for fast scalar multiplications without the drawback of the Frobenius maps. This paper shows an extension of the automorphisms on the Jacobians of hyperelliptic curves of arbitrary genus.

  • Low Leakage Current ITO Schottky Electrodes for AlGaN/GaN HEMTs

    Keita MATSUDA  Takeshi KAWASAKI  Ken NAKATA  Takeshi IGARASHI  Seiji YAEGASSI  

     
    PAPER-GaN Process Technology

      Vol:
    E91-C No:7
      Page(s):
    1015-1019

    To reduce the gate leakage current of AlGaN/GaN HEMTs, we selected ITO/Ni/Au for Schottky electrodes and Schottky characteristics were compared with those of Ni/Au electrodes. ITO/Ni/Au and Ni/Au electrodes were deposited by vacuum evaporation and annealed at 350 in nitrogen atmosphere. From the I-V evaluation results of ITO/Ni/Au electrodes, forward and reverse leakage currents were reduced. Schottky characteristics of ITO/Ni/Au electrodes were also improved compared to these of Ni/Au electrodes. In addition, substantial decrease of leakage currents was confirmed after the annealing of HEMTs with ITO/Ni/Au electrodes. This may be explained that ITO/AlGaN interface state became lower by the annealing. By the temperature dependence of I-V curves, clear dependence was confirmed for the gates with ITO/Ni/Au electrodes. On the other hand, small dependence was observed for those with Ni/Au electrodes. From these results, tunnel leakage currents were dominant for the gates with Ni/Au electrode. Thermal emission current was dominant for the gates with ITO/Ni/Au electrode. The larger temperature dependence was caused that ITO/AlGaN interface states were smaller than those for Ni/Au electrode. It was suggested that suppressed AlGaN Schottky barrier thinning was caused by the surface defect donors, then tunneling leakage currents were decreased. We evaluated HEMT characteristics with ITO/Ni/Au electrode and Ni/Au electrode. Id max and Gm max were similar characteristics, but Vth with ITO/Ni/Au electrode was shifted +0.4 V than that with Ni/Au electrode due to the higher Schottky barrier. It was confirmed to have a good pinch-off currents and low gate leakage currents by ITO/Ni/Au electrodes.

  • Adaptively Combining Local with Global Information for Natural Scenes Categorization

    Shuoyan LIU  De XU  Xu YANG  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E91-D No:7
      Page(s):
    2087-2090

    This paper proposes the Extended Bag-of-Visterms (EBOV) to represent semantic scenes. In previous methods, most representations are bag-of-visterms (BOV), where visterms referred to the quantized local texture information. Our new representation is built by introducing global texture information to extend standard bag-of-visterms. In particular we apply the adaptive weight to fuse the local and global information together in order to provide a better visterm representation. Given these representations, scene classification can be performed by pLSA (probabilistic Latent Semantic Analysis) model. The experiment results show that the appropriate use of global information improves the performance of scene classification, as compared with BOV representation that only takes the local information into account.

  • Fast Fine Granularity Scalability Decoding Scheme for Low-Delay Scalable Video Coding Applications

    Nae-Ri PARK  Joo-Hee MOON  Jong-Ki HAN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E91-D No:7
      Page(s):
    2079-2082

    The Fine Grain Scalability (FGS) technique used in SVC codec encodes and decodes the quantization error of QBL (quality base layer) along the cyclic scanning path. The FGS technique provides the scalability property to the compressed bit stream. However, the cyclic scanning procedure of FGS method may require a huge computing time. In this paper, we propose a fast FGS decoding scheme, which has a lower decoding complexity without sacrificing image quality.

  • Analysis of Divisible Load Scheduling with Result Collection on Heterogeneous Systems

    Abhay GHATPANDE  Hidenori NAKAZATO  Olivier BEAUMONT  Hiroshi WATANABE  

     
    PAPER-Network

      Vol:
    E91-B No:7
      Page(s):
    2234-2243

    Divisible Load Theory (DLT) is an established framework to study Divisible Load Scheduling (DLS). Traditional DLT ignores the result collection phase, and specifies no solution to the general case where both the network speed and computing capacity of the nodes are heterogeneous. In this paper, the DLS with Rosult Collection on HETerogemeous Systems (DLSRCHETS) problem is formulated as a linear program and analyzed. The papers to date that have dealt with result collection, proposed simplistic LIFO (Last In, First Out) and FIFO (First In, First Out) type of schedules as solutions. The main contributions of this paper are: (a) A proof of the Allocation Precedence Condition, which is inconsequential in LIFO or FIFO, but is important in a general schedule. (b) A proof of the Idle Time Theorem, which states that irrespective of whether load is allocated to all available processors, in the optimal solution to the DLSRCHETS problem, at the most one processor that is allocated load has idle time, and that the idle time exists only when the result collection begins immediately after the completion of load distribution.

  • Robust Object-Based Watermarking Using Feature Matching

    Viet-Quoc PHAM  Takashi MIYAKI  Toshihiko YAMASAKI  Kiyoharu AIZAWA  

     
    PAPER-Application Information Security

      Vol:
    E91-D No:7
      Page(s):
    2027-2034

    We present a robust object-based watermarking algorithm using the scale-invariant feature transform (SIFT) in conjunction with a data embedding method based on Discrete Cosine Transform (DCT). The message is embedded in the DCT domain of randomly generated blocks in the selected object region. To recognize the object region after being distorted, its SIFT features are registered in advance. In the detection scheme, we extract SIFT features from the distorted image and match them with the registered ones. Then we recover the distorted object region based on the transformation parameters obtained from the matching result using SIFT, and the watermarked message can be detected. Experimental results demonstrated that our proposed algorithm is very robust to distortions such as JPEG compression, scaling, rotation, shearing, aspect ratio change, and image filtering.

  • Bit-Depth Scalable Video Coding Based on H.264/AVC

    Sangseok PARK  K.R. RAO  

     
    LETTER-Image

      Vol:
    E91-A No:6
      Page(s):
    1541-1544

    A bit-depth scalability is proposed in an adaptive way based on modified inter-layer predictions of the spatial scalability. A simple prediction for high dynamic range (HDR) sequences is implemented to reduce the redundancy of the residual signals between the base layer which contains low dynamic range (LDR) sequences and the enhancement layer which contains HDR sequences by using scaling and offset values.

  • Auditory Artifacts due to Switching Head-Related Transfer Functions of a Dynamic Virtual Auditory Display

    Makoto OTANI  Tatsuya HIRAHARA  

     
    PAPER

      Vol:
    E91-A No:6
      Page(s):
    1320-1328

    Auditory artifacts due to switching head-related transfer functions (HRTFs) are investigated, using a software-implemented dynamic virtual auditory display (DVAD) developed by the authors. The DVAD responds to a listener's head rotation using a head-tracking device and switching HRTFs to present a highly realistic 3D virtual auditory space to the listener. The DVAD operates on Windows XP and does not require high-performance computers. A total system latency (TSL), which is the delay between head motion and the corresponding change of the ear input signal, is a significant factor of DVADs. The measured TSL of our DVAD is about 50 ms, which is sufficient for practical applications and localization experiments. Another matter of concern is the auditory artifact in DVADs caused by switching HRTFs. Switching HRTFs gives rise to wave discontinuity of synthesized binaural signals, which can be perceived as click noises that degrade the quality of presented sound image. A subjective test and excitation patterns (EPNs) analysis using an auditory filter are performed with various source signals and HRTF spatial resolutions. The results of the subjective test reveal that click noise perception depends on the source signal and the HRTF spatial resolution. Furthermore, EPN analysis reveals that switching HRTFs significantly distorts the EPNs at the off signal frequencies. Such distortions, however, are masked perceptually by broad-bandwidth source signals, whereas they are not masked by narrow-bandwidth source signals, thereby making the click noise more detectable. A higher HRTF spatial resolution leads to smaller distortions. But, depending on the source signal, perceivable click noises still remain even with 0.5-degree spatial resolution, which is less than minimum audible angle (1 degree in front).

  • Electromagnetic Waves on Partially Finite Periodic Arrays of Lossless or Lossy Penetrable Spheres

    Robert A. SHORE  Arthur D. YAGHJIAN  

     
    PAPER-Electromagnetics

      Vol:
    E91-B No:6
      Page(s):
    1819-1824

    An exact computable expression is obtained for the electromagnetic field of a three-dimensional partially finite periodic array of lossless or lossy magnetodielectric spheres illuminated by a plane wave propagating parallel to the array axis. The array is finite in the direction of the array axis and is of infinite extent in the directions transverse to the array axis. Illustrative numerical examples are presented.

2061-2080hit(4570hit)