The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

3161-3180hit(4570hit)

  • A Visual Secret Sharing Scheme for Color Images Based on Meanvalue-Color Mixing

    Takeru ISHIHARA  Hiroki KOGA  

     
    LETTER

      Vol:
    E86-A No:1
      Page(s):
    194-197

    In this letter we propose a new visual secret sharing scheme (VSSS) applicable to color images containing many colors such as photographs. In the proposed VSSS we can perceive a concealed secret image appearing on a reproduced image, which is obtained by stacking certain shares, according to the principle called the meanvalue-color mixing (MCM). First, we mathematically formulate the MCM and define a new parameter that determines the minimum quality of the reproduced secret image. Then, we explicitly construct the VSSS based on the MCM under general access structures. The construction is proved to be realistic by experiment under the (2,2)-threshold access structure.

  • Radio Channel Spatial Propagation Model for Mobile 3G in Smart Antenna Systems

    Angel ANDRADE  David COVARRUBIAS  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    213-220

    Array antennas are employed at the receiver for a variety of purposes such as to combat fading or to reduce co-channel interference. To evaluate the performance of a wireless communications system using antenna arrays it becomes necessary to have spatial channel models that describe the Angle of Arrival (AOA), Time of Arrival (TOA) and the Angle Spread (AS) of the multipath components. Among the most widely used radio propagation models is the single bounce scattering geometric model, where propagation between the transmitting and receiving antennas is assumed to take place via single scattering from an intervening obstacle. Currently, several geometric models are available such as circular and elliptical scattering models, with each model being applicable to a specific environment type. This paper addresses the modeling, simulation and evaluation of the angle spread in smart antenna systems taking into account the Gaussian density model, and proves that the model finds use both in a micro cell as well as in a macro cell environment. Moreover, we show statistics for the angle and time of arrival.

  • An Effective Multicast ATM Switch for Advanced Multimedia Communication --Singlecast Stuffed Multicast Advanced Processing (SSMAP) ATM Switch --

    Takahiro NISHIMURA  Katsutoshi OHMAE  Hiromi OKADA  

     
    PAPER-Switching

      Vol:
    E86-B No:1
      Page(s):
    413-420

    In this paper, we present a new design to support multicasting in an ATM switches, called the Singlecast Stuffed Multicast Advanced Processing (SSMAP) ATM switch, which can transmit multicast traffic effectively. The SSMAP ATM switch consists of two cell operation parts, a multicast operation part and a singlecast operation part. This structure is designed so as to increase the efficiency of packet forwarding by allowing singlecast cells to use the resources that remain unused during multicast traffic handling. Furthermore, we propose new multicast scheduling methods using the SSMAP ATM switch. We evaluate the characteristics of the SSMAP ATM switch and multicast scheduling methods by computer simulations, and demonstrate their validity.

  • Estimation of Load Matching Condition for Dielectric Barrier Discharge Load

    Oleg KOUDRIAVTSEV  Serguei MOISEEV  Mutsuo NAKAOKA  

     
    LETTER-Nonlinear Problems

      Vol:
    E86-A No:1
      Page(s):
    244-247

    This paper presents an effective approach for estimating of the load matching conditions for dielectric barrier discharge (DBD) load. By the simulation method proposed here, optimal working frequency and optimal applied voltage for driving of DBD load can be calculated. Estimation results for the DBD ultraviolet generation lamp as a load of series resonant inverter are presented here, together with their evaluations.

  • Efficient τ-Adic Sliding Window Method on Elliptic Curve Cryptosystems

    Hiroaki OGURO  Tetsutaro KOBAYASHI  

     
    PAPER-Asymmetric Ciphers

      Vol:
    E86-A No:1
      Page(s):
    113-120

    We introduce efficient algorithms for the τ-adic sliding window method, which is a scalar multiplication algorithm on Koblitz curves over F2m. The τ-adic sliding window method is divided into two parts: the precomputation part and the main computation part. Until now, there has been no efficient way to deal with the precomputation part; the required points of the elliptic curves were calculated one by one. We propose two fast algorithms for the precomputation part. One of the proposed methods decreases the cost of the precomputation part by approximately 30%. Since more points are calculated, the total cost of scalar multiplication is decreased by approximately 7.5%.

  • A Scattered Pilot OFDM Receiver with Equalization for Multipath Environments with Delay Difference Greater than Guard Interval

    Satoshi SUYAMA  Masafumi ITO  Hiroshi SUZUKI  Kazuhiko FUKAWA  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    275-282

    OFDM transmission performance in mobile communications suffers severe degradation caused by multipath delay difference greater than the Guard Interval (GI). This is because the excess delay results in considerable Inter-Symbol Interference (ISI) between temporally adjacent symbols and Inter-Carrier Interference (ICI) among subcarriers in the same symbol. This paper proposes a robust OFDM receiver for the scattered pilot OFDM signal that can effectively suppress both ISI and ICI by using two types of equalization and a smoothed FFT-window. In order to verify the performance of the proposed receiver, computer simulations are conducted in accordance with the scattered pilot OFDM signal format of the Digital Terrestrial Television Broadcasting (DTTB). The simulation results demonstrate that the proposed receiver shows much better performance than the conventional receiver in multipath fading environments with the delay difference greater than GI duration.

  • FDTD Analysis of a Near-Field Optical Fiber Probe with a Double Tapered Structure

    Keiji SAWADA  Hiroaki NAKAMURA  Hirotomo KAMBE  Toshiharu SAIKI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2055-2058

    Using the finite-difference time-domain method, we evaluated the performance of apertured near-field fiber probes with a double-tapered structure, which have exhibited, in recent experiments, a much higher collection efficiency of localized light in comparison with single-tapered probes. We clarified that this high collection efficiency could be attributed to the shortening of the cutoff region, and the efficient coupling to the guiding mode of the optical fiber. By reproducing the experimental results in terms of the spatial resolution and the collection efficiency as a function of the aperture diameter, our calculation was confirmed to be valid and useful for the design of probes in a variety of applications.

  • VLSI Implementation of Lifting Discrete Wavelet Transform Using the 5/3 Filter

    Pei-Yin CHEN  

     
    PAPER-VLSI Systems

      Vol:
    E85-D No:12
      Page(s):
    1893-1897

    In this paper, a VLSI architecture for lifting-based discrete wavelet transform (LDWT) is presented. Our architecture folds the computations of all resolution levels into the same low-pass and high-pass units to achieve higher hardware utilization. Due to the regular and flexible structure of the design, its area is independent of the length of the 1-D input sequence, and its latency is independent of the number of resolution levels. For the computations of analysis process of N-sample 1-D 3-level LDWT, our design takes about N clock cycles and requires 2 multipliers, 4 adders, and 22 registers. It is fabricated with TSMC 0.35-µm cell library and has a die size of 1.21.2 mm2. The power dissipation of the chip is about 0.4 W at the clock rate of 80 MHz.

  • A Clustering Based Fast Clock Schedule Algorithm for Light Clock-Trees

    Makoto SAITOH  Masaaki AZUMA  Atsushi TAKAHASHI  

     
    PAPER-Clock Scheduling

      Vol:
    E85-A No:12
      Page(s):
    2756-2763

    We introduce a clock schedule algorithm to obtain a clock schedule that achieves a shorter clock period and that can be realized by a light clock tree. A shorter clock period can be achieved by controlling the clock input timing of each register, but the required wire length and power consumption of a clock tree tends to be large if clock input timings are determined without considering the locations of registers. To overcome the drawback, our algorithm constructs a cluster that consists of registers with the same clock input timing located in a close area. The registers in each cluster are driven by a buffer and a shorter wire length can be achieved. In our algorithm, first registers are partitioned into clusters by their locations, and clusters are modified to improve the clock period while maintaining the radius of each cluster small. In our experiments, the clock period achieved in average is about 13% shorter than that achieved by a zero-skew clock tree, and about 4% longer than the theoretical minimum. The wire length and power consumption of a clock tree according to an obtained clock schedule is comparable to these of a zero skew tree.

  • Experimental Verification of the Theory on Energy Modulation of an Electron Beam with an Optical Near-Field

    Ryo ISHIKAWA  Jongsuck BAE  Koji MIZUNO  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2086-2092

    An exchange of energy between nonrelativistic electrons and evanescent waves in an optical near-filed has been investigated in an infrared region. A metal microslit has been adopted as an optical near-field generator which produces a number of evanescent waves by illumination of a laser beam. The theory has predicted that electrons interact selectively with the evanescent wave whose phase velocity is equal to the velocity of the electrons. In order to verify the theory, two types of precise microslits with different shapes, a slot and a V-shaped groove, have been fabricated. Experiments performed using these slits at the wavelength of 10.6 µm have shown that the energy change of the electrons has varied from 2 eV to 13 eV with their initial energy between 25-95 keV for a 3.2 kW CO2 laser pulse. The measured results have given experimental verifications to the theory.

  • Enhanced Packet Access Scheme for IMT-2000/UMTS Random Access Channel

    Young-Sam KIM  Jun-Kui AHN  Kyoo-Jin HAN  Keum-Chan WHANG  

     
    LETTER-Wireless Communication Technology

      Vol:
    E85-B No:12
      Page(s):
    2946-2949

    We propose an enhanced packet access scheme for IMT-2000/UMTS random access channel (RACH). In the proposed scheme, 2-level preamble detection threshold and 2-level message transmission power are used to mitigate the power imbalance in RACH. Simulation results demonstrate that the proposed scheme improves the interference characteristics of the conventional RACH and makes wider range of the detection threshold available.

  • Fluorescence Spectroscopy of Rb Atoms with Two-Color Optical Near Fields for a High-Resolution Slit-Type Detector

    Kouki TOTSUKA  Haruhiko ITO  Motoichi OHTSU  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2093-2096

    We introduce stepwise resonant excitation by two-color optical near fields in order to detect Rb atoms with a slit-type detector. Blue fluorescence of the second D2 line is monitored for background-free detection. Feasibility of the method is shown from an experiment with a Rb vapor cell, where a sub-Doppler spectrum with the FWHM of 80 MHz is obtained. The detection efficiency is estimated at about 3% for cold Rb atoms.

  • Sparsely Encoded Associative Memory Model with Forgetting Process

    Tomoyuki KIMOTO  Masato OKADA  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E85-D No:12
      Page(s):
    1938-1945

    In this paper, an associative memory model with a forgetting process proposed by Mezard et al. is investigated as a means of storing sparsely encoded patterns by the SCSNA proposed by Shiino and Fukai. Similar to the case of storing non-sparse (non-biased) patterns as analyzed by Mezard et al., this sparsely encoded associative memory model is also free from a catastrophic deterioration of the memory caused by memory pattern overloading. We theoretically obtain a relationship between the storage capacity and the forgetting rate, and find that there is an optimal forgetting rate leading to the maximum storage capacity. We call this the optimal storage capacity rate. As the memory pattern firing rate decreases, the optimal storage capacity increases and the optimal forgetting rate decreases. Furthermore, we shown that the capacity rate (i.e. the ratio of the storage capacity for the conventional correlation learning rule to the optimal storage capacity) is almost constant with respect to the memory pattern firing rate.

  • Correction of Numerical Phase Velocity Errors in Nonuniform FDTD Meshes

    Andreas CHRIST  Jurg FROHLICH  Niels KUSTER  

     
    PAPER-Antenna and Propagation

      Vol:
    E85-B No:12
      Page(s):
    2904-2915

    This paper proposes a novel method to correct numerical phase velocity errors in FDTD meshes with nonuniform step size. It enables the complete compensation of the phase velocity errors introduced by the mesh grading for one frequency and one arbitrary direction of propagation independently of the mesh grading. This permits the usage of the Total-Field-Scattered-Field formulation in connection with electrically large nonuniform FDTD meshes and allows a general reduction of the grid dispersion errors. The capabilities of the proposed method are demonstrated with the help of two examples: (1) the fields in a dielectric sphere illuminated by a plane wave are calculated and (2) a patch antenna simulation demonstrates that the uncertainty in determining its resonance frequency can be reduced by about 50%.

  • Multiscale Modeling with Stable Distribution Marginals for Long-Range Dependent Network Traffic

    Chien Trinh NGUYEN  Tetsuya MIKI  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2828-2837

    As demonstrated by many studies, measured wide-area network traffic exhibits fractal properties, such as self-similarity, burstiness, and long-range dependence (LRD). In order to describe long-range dependent network traffic and to emphasize the performance aspects of descriptive traffic models with additive and multiplicative structures, the multifractal wavelet model (MWM), which is based on the binomial cascade, has been shown to match the behavior of network traffic over small and large time scales. In this paper, using appropriate mathematical and statistical analyses, we develop the MWM proposed in [14], which provides a complete description of long-range dependent network traffic. First, we present accurate parameters of the MWM over different time scales. Next, a marginal stable distribution of MWM network traffic data is analyzed. The accuracy of the proposed MWM compared to actual data measurements is confirmed by queuing behavior performance through computer simulations.

  • Multiple Delay Bounds Control Algorithm via Class-Level Service Curves

    Daein JEONG  H. Jonathan CHAO  Hwasung KIM  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2868-2879

    In this paper, we propose a packet-scheduling algorithm, called the Class-level Service Lagging (CSL) algorithm, that guarantees multiple delay bounds for multi-class traffic in packet networks. We derive the associated schedulability test conditions, which are used to determine call admission. We first introduce a novel implementation of priority control, which has a conventional and simple form. We show how the efforts to confirm the logical validity of that implementation are managed to reach the definition of the CSL algorithm. The priority control is realized by imposing class-level unfairness in service provisioning, while the underlying service mechanism is carried out using the notion of fair queueing. The adoption of fair queueing allows the capability to maintain the service quality of the well-behaving traffic even in the presence of misbehaving traffic. We call this the firewall property. Simulation results demonstrate the superiority of the CSL algorithm in both priority control and firewall functionality. We also describe how the CSL algorithm is implementable with a computational complexity of O(1). Those features as well as the enhanced scalability, which results from the class-level approach, confirm the adequacy of the CSL algorithm for the fast packet networks.

  • Efficient Real-Time Scheduling Algorithms for Multiprocessor Systems

    Seongje CHO  Suk-Kyoon LEE  Sang AHN  Kwei-Jay LIN  

     
    PAPER-Network

      Vol:
    E85-B No:12
      Page(s):
    2859-2867

    For real-time systems, multiprocessor support is indispensable to handle the large number of requests. Existing on-line scheduling algorithms such as Earliest Deadline First Algorithm (EDF) and Least Laxity Algorithm (LLA) may not be suitable for scheduling hard real-time tasks on multiprocessors. Although EDF has a low context switching overhead, it can produce arbitrarily low processor utilization. LLA has been shown as suboptimal, but has the potential for higher context switching overhead. We propose new on-line scheduling algorithms Earliest Deadline/Least Laxity (ED/LL) and Earliest Deadline Zero Laxity (EDZL) for identical multiprocessors. We show that ED/LL is suboptimal for multiprocessors and EDZL is suboptimal for two processors. Experimental results show that ED/LL and EDZL have low context switching overhead and low deadline miss rate.

  • Fidelity of Near-Field Intensity Distribution of Surface Plasmon on Slightly Rough Surfaces

    Tetsuya KAWANISHI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2065-2070

    Near-fields of electromagnetic waves scattered by slightly rough metal surfaces which support the surface plasmon mode at optical frequencies were studied theoretically by using the stochastic functional approach. Fidelity of near-field intensity images, defined by the correlation coefficient between the surface profile and the intensity of the scattered wave field, was investigated in order to discuss field distributions of the surface plasmon on complicated structures. We show that the fidelity strongly depends on the incident wavenumber and polarization when the incident wave corresponds to the surface plasmon mode.

  • High Resolution Optical Near-Field Spectroscopy Using Intrinsic Frequency Noise of Diode Laser

    Yasuo OHDAIRA  Hirokazu HORI  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2097-2103

    Frequency modulation (FM) noise spectroscopy with diode laser is applied to high-resolution Doppler-free spectroscopy of Cs atomic vapor near a dielectric surface with evanescent-wave pump-probe configuration. Both high resolution and high sensitivity are realized by using an extremely simple experimental setup, in which no sweep or precise tuning of laser frequency are required. Several experimental configurations of optical near-field spectroscopy are demonstrated, which is useful for an extensive study of resonant interactions of atoms and microscopic electronic systems in optical near-fields.

  • Very Linear and Low-Noise Ka/Ku-Band Voltage Controlled Oscillators

    Tsuneo TOKUMITSU  Osamu BABA  Kiyoshi KAJII  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2008-2014

    A simple and practical methodology to make microwave voltage-controlled oscillators (VCOs) very linear is presented. Incorporating a very short microstrip line ( λg/4) for varactor's bias feed, the C-V curve was shifted by a constant -Δ C and performed a capacitance tailored nearly proportional to VCONT-2. This modification featured very linear VCO implementation at no expense of housing and phase noise performance. Ka- and Ku-band VCOs fabricated with this new technique exhibited a constant tuning sensitivity in a wide control voltage range (2-10 V). The phase noise level at 100 kHz offset was as low as -107 dBc/Hz for a 13 GHz-band VCO and better than -85 dBc/Hz for a 38 GHz-band VCO, due to combination of capacitor-coupled high-Q resonator and multiplier. This technology is very effective for quasi-millimeter-wave and millimeter-wave FM/FSK modulation and FMCW radar applications.

3161-3180hit(4570hit)