The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SC(4570hit)

1581-1600hit(4570hit)

  • Improvement of Detection Performance in DWT-Based Image Watermarking under Specified False Positive Probability

    Masayoshi NAKAMOTO  Kohei SAYAMA  Mitsuji MUNEYASU  Tomotaka HARANO  Shuichi OHNO  

     
    PAPER-Digital Signal Processing

      Vol:
    E94-A No:2
      Page(s):
    661-670

    For copyright protection, a watermark signal is embedded in host images with a secret key, and a correlation is applied to judge the presence of watermark signal in the watermark detection. This paper treats a discrete wavelet transform (DWT)-based image watermarking method under specified false positive probability. We propose a new watermarking method to improve the detection performance by using not only positive correlation but also negative correlation. Also we present a statistical analysis for the detection performance with taking into account the false positive probability and prove the effectiveness of the proposed method. By using some experimental results, we verify the statistical analysis and show this method serves to improve the robustness against some attacks.

  • Group Based Proportional Fairness Scheduling with Imperfect Channel Quality Indicator in OFDMA Systems

    Jae-Wook JUNG  Deok Seong KIM  Dae Gil CHO  Young-Soo KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:2
      Page(s):
    599-602

    A modified proportional fairness (PF) scheduling scheme for OFDMA systems with imperfect channel quality indicator is suggested. It is based on user grouping, and in system level simulations, the proposed scheme improves average user throughput considerably when compared to conventional PF scheduling without grouping.

  • Core Working Set Based Scratchpad Memory Management

    Ning DENG  Weixing JI  Jiaxin LI  Qi ZUO  Feng SHI  

     
    PAPER-Computer System

      Vol:
    E94-D No:2
      Page(s):
    274-285

    Many state-of-the-art embedded systems adopt scratch-pad memory (SPM) as the main on-chip memory due to its advantages in terms of energy consumption and on-chip area. The cache is automatically managed by the hardware, while SPM is generally manipulated by the software. Traditional compiler-based SPM allocation methods commonly use static analysis and profiling knowledge to identify the frequently used data during runtime. The data transfer is determined at the compiling stage. However, these methods are fragile when the access pattern is unpredictable at compile time. Also, as embedded devices diversify, we expect a novel SPM management that can support embedded application portability over platforms. This paper proposes a novel runtime SPM management method based on the core working set (CWS) theory. A counting-based CWS identification algorithm is adopted to heuristically determine those data blocks in the program's working set with high reference frequency, and then these promising blocks are allocated to SPM. The novelty of this SPM management method lies in its dependence on the program's dynamic access pattern as the main cue to conduct SPM allocation at runtime, thus offloading SPM management from the compiler. Furthermore, the proposed method needs the assistance of MMU to complete address redirection after data transfers. We evaluate the new approach by comparing it with the cache system and a classical profiling-driven method, and the results indicate that the CWS-based SPM management method can achieve a considerable energy reduction compared with the two reference systems without notable degradation on performance.

  • An Approximative Calculation of the Fractal Structure in Self-Similar Tilings

    Yukio HAYASHI  

     
    LETTER-Nonlinear Problems

      Vol:
    E94-A No:2
      Page(s):
    846-849

    Fractal structures emerge from statistical and hierarchical processes in urban development or network evolution. In a class of efficient and robust geographical networks, we derive the size distribution of layered areas, and estimate the fractal dimension by using the distribution without huge computations. This method can be applied to self-similar tilings based on a stochastic process.

  • Multi-Scale Multi-Level Generative Model in Scene Classification

    Wenjie XIE  De XU  Yingjun TANG  Geng CUI  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E94-D No:1
      Page(s):
    167-170

    Previous works show that the probabilistic Latent Semantic Analysis (pLSA) model is one of the best generative models for scene categorization and can obtain an acceptable classification accuracy. However, this method uses a certain number of topics to construct the final image representation. In such a way, it restricts the image description to one level of visual detail and cannot generate a higher accuracy rate. In order to solve this problem, we propose a novel generative model, which is referred to as multi-scale multi-level probabilistic Latent Semantic Analysis model (msml-pLSA). This method consists of two parts: multi-scale part, which extracts visual details from the image of diverse resolutions, and multi-level part, which concentrates multiple levels of topic representation to model scene. The msml-pLSA model allows for the description of fine and coarse local image detail in one framework. The proposed method is evaluated on the well-known scene classification dataset with 15 scene categories, and experimental results show that the proposed msml-pLSA model can improve the classification accuracy compared with the typical classification methods.

  • Data Management for Large-Scale Position-Tracking Systems

    Fumiaki INOUE  Yongbing ZHANG  Yusheng JI  

     
    PAPER-Scalability & Timeliness

      Vol:
    E94-B No:1
      Page(s):
    45-54

    We propose a distributed data management approach in this paper for a large-scale position-tracking system composed of multiple small systems based on wireless tag technologies such as RFID and Wi-Fi tags. Each of these small systems is called a domain, and a domain server manages the position data of the users belonging to its managing domain and also to the other domains but temporarily residing in its domain. The domain servers collaborate with each other to globally manage the position data, realizing the global position tracking. Several domains can be further grouped to form a larger domain, called a higher-domain, so that the whole system is constructed in a hierarchical structure. We implemented the proposed approach in an experimental environment, and conducted a performance evaluation on the proposed approach and compared it with an existing approach wherein a central server is used to manage the position data of all the users. The results showed that the position data processing load is distributed among the domain servers and the traffic for position data transmission over the backbone network can be significantly restrained.

  • One-Hop Neighbor Based Broadcast Scheduling in Wireless Sensor Networks

    Taehong KIM  Daeyoung KIM  Chong Poh KIT  

     
    LETTER-Network

      Vol:
    E94-B No:1
      Page(s):
    297-301

    For wireless sensor networks in which resources are limited and network topology dynamically changes, we propose the one-hop neighbor based broadcast scheduling (ONBS) algorithm to provide reliable delivery service of broadcast packets. The proposed algorithm reduces the scheduling overhead by allowing each joining node to decide its broadcast schedule based on only its one-hop neighbor information in an on-line and distributed manner. Also, once the broadcast schedule is decided, it is not changed to accommodate a newly joining node in order to prevent the consecutive changes of existing schedules. The network simulation results show that the proposed algorithm provides low latency and high reachability despite low overhead and on-line algorithm design.

  • Resource Reduction Method for the LTE-Advanced Uplink ACK/NACK Signal and SR

    Seigo NAKAO  Kenji TAKAGI  Masaru FUKUOKA  Daichi IMAMURA  Hidekazu MURATA  Koji YAMAMOTO  Susumu YOSHIDA  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E94-B No:1
      Page(s):
    364-367

    Advanced Evolved Universal Terrestrial Radio Access (Advanced E-UTRA), called LTE-Advanced, has been standardized in the 3rd Generation Partnership Project (3GPP) as a candidate for IMT-Advanced. LTE-Advanced supports spatial orthogonal-resource transmit diversity (SORTD) [1],[2] for ACK/NACK signals and scheduling requests (SRs), which are used to control downlink hybrid automatic repeat requests (HARQs) and manage uplink radio resources based on uplink data traffic, respectively. Both ACK/NACK signals and SRs are carried via a physical uplink control channel (PUCCH) [3], and a common PUCCH format is used for both ACK/NACK signals and SRs. If SORTD is used, the base station assigns mutually orthogonal resources to each antenna included in the user equipment (UE) for ACK/NACK signals and SRs; hence, the number of required resources increases with the number of transmitting antennas in the UE. In this paper, we study the resource reduction method for ACK/NACK signal and SR in case of SORTD using the concept of common resource. In addition, we investigate a phase rotation scheme for common resources to improve the SR detection performance.

  • Improved Channel Estimator for MIMO-SCBT Systems Using Quadriphase Complementary Sequences

    Haiming WANG  Xiqi GAO  Bin JIANG  Xiaohu YOU  Wei HONG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    342-345

    In this letter, an improved channel estimator for MIMO-SCBT systems is proposed. Pilot blocks are constructed using quadriphase complementary sequences (QCSs) which enable both one-sided (OSD) and two-sided (TSD) channel estimation (CE). And OSD-CE and TSD-CE are combined to provide improved performance in frequency-selective fast and slow fading channels and to maintain low-complexity implementations. Simulation results demonstrate the performance merits of the proposed scheme.

  • Scattering of a Plane Wave from the End-Face of a Three-Dimensional Waveguide System

    Asami TAKI  Akira KOMIYAMA  

     
    BRIEF PAPER-Scattering and Diffraction

      Vol:
    E94-C No:1
      Page(s):
    63-67

    The scattering of a plane wave from the end-face of a three-dimensional waveguide system composed of a large number of cores is treated by the volume integral equation for the electric field and the first order term of a perturbation solution for TE and TM wave incidence is analytically derived. The far scattered field does not almost depend on the polarization of an incident wave and the angle dependence is described as the Fourier transform of the incident field in the cross section of cores. To clarify the dependence of the scattering pattern on the arrangement of cores some numerical examples are shown.

  • Unicode Canonical Decomposition for Hangeul Syllables in Regular Expression

    Hee Yuan TAN  Hyotaek LIM  

     
    PAPER-Natural Language Processing

      Vol:
    E94-D No:1
      Page(s):
    146-154

    Owing to the high expressiveness of regular expression, it is frequently used in searching and manipulation of text based data. Regular expression is highly applicable in processing Latin alphabet based text, but the same cannot be said for Hangeul*, the writing system for Korean language. Although Hangeul possesses alphabetic features within the script, expressiveness of regular expression pattern using Hangeul is hindered by the absence of syllable decomposition. Without decomposition support in regular expression, searching through Hangeul text is limited to string literal matching. Literal matching has made enumeration of syllable candidates in regular expression pattern definition indispensable, albeit impractical, especially for a large set of syllable candidates. Although the existing implementation of canonical decomposition in Unicode standard does reduce a pre-composed Hangeul syllable into smaller unit of consonant-vowel or consonant-vowel-consonant letters, it still leaves quite a number of the individual letters in compounded form. We have observed that there is a necessity to further reduce the compounded letters into unit of basic letters to properly represent the Korean script in regular expression. We look at how the new canonical decomposition technique proposed by Kim can help in handling Hangeul in regular expression. In this paper, we examine several of the performance indicators of full decomposition of Hangeul syllable to better understand the overhead that might incur, if a full decomposition were to be implemented in a regular expression engine. For efficiency considerations, we propose a semi decomposition technique alongside with a notation for defining Hangeul syllables. The semi decomposition functions as an enhancement to the existing regular expression syntax by taking in some of the special constructs and features of the Korean language. This proposed technique intends to allow an end user to have a greater freedom to define regular expression syntax for Hangeul.

  • Artificial Cohort Generation Based on Statistics of Real Cohorts for GMM-Based Speaker Verification

    Yuuji MUKAI  Hideki NODA  Takashi OSANAI  

     
    LETTER-Speech and Hearing

      Vol:
    E94-D No:1
      Page(s):
    162-166

    This paper discusses speaker verification (SV) using Gaussian mixture models (GMMs), where only utterances of enrolled speakers are required. Such an SV system can be realized using artificially generated cohorts instead of real cohorts from speaker databases. This paper presents a rational approach to set GMM parameters for artificial cohorts based on statistics of GMM parameters for real cohorts. Equal error rates for the proposed method are about 10% less than those for the previous method, where GMM parameters for artificial cohorts were set in an ad hoc manner.

  • F-Scan: A DFT Method for Functional Scan at RTL

    Marie Engelene J. OBIEN  Satoshi OHTAKE  Hideo FUJIWARA  

     
    PAPER-Information Network

      Vol:
    E94-D No:1
      Page(s):
    104-113

    Due to the difficulty of test pattern generation for sequential circuits, several design-for-testability (DFT) approaches have been proposed. An improvement to these current approaches is needed to cater to the requirements of today's more complicated chips. This paper introduces a new DFT method applicable to high-level description of circuits, which optimally utilizes existing functional elements and paths for test. This technique, called F-scan, effectively reduces the hardware overhead due to test without compromising fault coverage. Test application time is also kept at the minimum. The comparison of F-scan with the performance of gate-level full scan design is shown through the experimental results.

  • Reflection, Diffraction and Scattering at Low Grazing Angle of Incidence: Regular and Random Systems Open Access

    Junichi NAKAYAMA  

     
    INVITED PAPER

      Vol:
    E94-C No:1
      Page(s):
    2-9

    When a monochromatic electromagnetic plane wave is incident on an infinitely extending surface with the translation invariance property, a curious phenomenon often takes place at a low grazing angle of incidence, at which the total wave field vanishes and a dark shadow appears. This paper looks for physical and mathematical reasons why such a shadow occurs. Three cases are considered: wave reflection by a flat interface between two media, diffraction by a periodic surface, and scattering from a homogeneous random surface. Then, it is found that, when a translation invariant surface does not support guided waves (eigen functions) propagating with real propagation constants, such the shadow always takes place, because the primary excitation disappears at a low grazing angle of incidence. At the same time, a shadow form of solution is proposed. Further, several open problems are given for future works.

  • Fast Verification of Hash Chains with Reduced Storage

    Dae Hyun YUM  Jin Seok KIM  Pil Joong LEE  Sung Je HONG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E94-A No:1
      Page(s):
    383-391

    A hash chain H for a hash function hash(·) is a sequence of hash values ⟨ xn, xn-1,..., x0 ⟩, where x0 is a secret value, xi is generated by xi = hash(xi-1) for 1 ≤ i ≤ n, and xn is a public value. Hash values of H are disclosed gradually from xn-1 to x0. The correctness of a disclosed hash value xi can be verified by checking the equation xn =? hashn-i(xi). To speed up the verification, Fischlin introduced a check-bit scheme at CT-RSA 2004. The basic idea of the check-bit scheme is to output some extra information cb, called a check-bit vector, in addition to the public value xn, which allows each verifier to perform only a fraction of the original work according to his or her own security level. We revisit the Fischlin's check-bit scheme and show that the length of the check-bit vector cb can be reduced nearly by half. The reduced length of cb is close to the theoretic lower bound.

  • Scalable Backup Configurations Creation for IP Fast Reroute

    Shohei KAMAMURA  Takashi MIYAMURA  Yoshihiko UEMATSU  Kohei SHIOMOTO  

     
    PAPER-Internet

      Vol:
    E94-B No:1
      Page(s):
    109-117

    IP Fast Reroute techniques have been proposed to achieve fast failure recovery, just a few milliseconds. The basic idea of IP Fast Reroute is to reduce recovery time by precomputing backup routes. The multiple routing configurations (MRC) algorithm was proposed to implement IP Fast Reroute. MRC prepares backup configurations, which are used for finding a detour route after a failure. However, this algorithm establishes too many backup configurations to recover from failures. We propose a new backup configuration computation algorithm that creates the fewest possible configurations. The basic idea is to construct a spanning tree that excludes failure links in each backup configuration. We show that the effectiveness of our algorithm is especially high in large-scale power-law networks.

  • SpliTable: Toward Routing Scalability through Distributed BGP Routing Tables

    Akeo MASUDA  Cristel PELSSER  Kohei SHIOMOTO  

     
    PAPER-Scalability & Timeliness

      Vol:
    E94-B No:1
      Page(s):
    64-76

    The Internet has grown extremely fast in the last two decades. The number of routes to be supported by the routers has become very large. Moreover, the number of messages exchanged to distribute the routes has increased even faster. In this paper, we propose SpliTable, a scalable way to support the Internet routes in a Service Provider network. In our proposal, BGP route selection is done by distributed servers on behalf of the routers. They are called route selection servers. The selected routes are then stored in distributed routing tables. Each router maintains only its share of Internet routes, not the routes for each Internet prefix as it is the case today. We adapted the concept of Distributed Hash Tables (DHT) for that purpose. We show analytically that our proposal is more scalable in the number of routes supported in each router than current iBGP route distribution solutions. Moreover, the number of control messages exchanged with our proposal is bounded contrary to current sparse iBGP route distribution solutions which may never converge. We confirm these findings in an evaluation of a prototype implementation.

  • Polarization and Spatial Statistics of Wideband MIMO Relay Channels in Urban Environment at 2.35 GHz

    Xin NIE  Jianhua ZHANG  Ping ZHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    139-149

    Relay, which promises to enhance the performance of future communication networks, is one of the most promising techniques for IMT-Advanced systems. In this paper, multiple-input multiple-output (MIMO) relay channels based on outdoor measurements are investigated. We focus on the link between the base station (BS) and the relay station (RS) as well as the link between the RS and the mobile station (MS). First of all, the channels were measured employing a real-time channel sounder in IMT-Advanced frequency band (2.35 GHz with 50 MHz bandwidth). Then, the parameters of multipath components (MPCs) are extracted utilizing space-alternating generalized expectation algorithm. MPC parameters of the two links are statistically analyzed and compared. The polarization and spatial statistics are gotten. The trends of power azimuth spectrum (PAS) and cross-polarization discrimination (XPD) with the separation between the RS and the MS are investigated. Based on the PAS, the propagation mechanisms of line-of-sight and non-line-of-sight scenarios are analyzed. Furthermore, an approximate closed-form expression of channel correlation is derived. The impacts of PAS and XPD on the channel correlation are studied. Finally, some guidelines for the antenna configurations of the BS, the RS and the MS are presented. The results reveal the different characteristics of relay channels and provide the basis for the practical deployment of relay systems.

  • Scattering of Light by a Single Imperfection Core in a Waveguide System

    Akira KOMIYAMA  

     
    BRIEF PAPER-Scattering and Diffraction

      Vol:
    E94-C No:1
      Page(s):
    59-62

    An asymptotic expansion of the amplitude of the scattered wave by an imperfection core in a waveguide system is derived and it is shown that the scattered wave is partially canceled by the direct wave at large distance and a shadow takes place. For z→ ∞ where z is the distance along the waveguide axis the amplitudes of the direct and scattered waves decrease in proportion to z- and in the shadow region the amplitude of the sum of both waves decreases in proportion to z-. To supplement the analytical results some numerical examples are shown.

  • Improvement of Dependability against Node Capture Attacks for Wireless Sensor Networks

    Eitaro KOHNO  Tomoyuki OHTA  Yoshiaki KAKUDA  Masaki AIDA  

     
    PAPER-Assurance

      Vol:
    E94-D No:1
      Page(s):
    19-26

    A Wireless Sensor Network has sensor nodes which have limited computational power and memory size. Due to the nature of the network, the data is vulnerable to attacks. Thus, maintaining confidentiality is an important issue. To compensate for this problem, there are many countermeasures which utilize common or public key cryptosystems that have been proposed. However, these methods have problems with establishing keys between the source and the destination nodes. When these two nodes try to establish new keys, they must exchange information several times. Also, the routes of the Wireless Sensor Networks can change frequently due to an unstable wireless connection and batteries running out on sensor nodes. These problems of security and failure become more serious as the number of nodes in the network increases. In this paper, we propose a new data distribution method to compensate for vulnerability and failure based on the Secret Sharing Scheme. In addition, we will confirm the effect of our method through experiments. Concerning security, we compare our method with the existing TinySec, which is the major security architecture of Wireless Sensor Networks.

1581-1600hit(4570hit)