The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

3681-3700hit(16314hit)

  • Narrowband Interference Mitigation Based on Compressive Sensing for OFDM Systems

    Sicong LIU  Fang YANG  Chao ZHANG  Jian SONG  

     
    LETTER-Noise and Vibration

      Vol:
    E98-A No:3
      Page(s):
    870-873

    A narrowband interference (NBI) estimation and mitigation method based on compressive sensing (CS) for communication systems with repeated training sequences is investigated in this letter. The proposed CS-based differential measuring method is performed through the differential operation on the inter-block-interference-free regions of the received adjacent training sequences. The sparse NBI signal can be accurately recovered from a time-domain measurement vector of small size under the CS framework, without requiring channel information or dedicated resources. Theoretical analysis and simulation results show that the proposed method is robust to NBI under multi-path fading channels.

  • Window Functions for Frame Correlation Reduction in Overlapped FFT Based Energy Detection

    Ryo TAKAI  Shoya UCHIDA  Yukitoshi SANADA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:3
      Page(s):
    485-493

    Overlapped FFT based energy detection has been proposed as a signal detection scheme in dynamic spectrum access. The overlapped FFT scheme increases the number of FFT frames to reduce the variance of squared noise and improves the detection performance. As the FFT frames are overlapped, correlation values between the frames affect to the detection performance. This paper proposes the window functions which decrease the correlation values between adjacent FFT bins. Numerical results obtained through computer simulation show that novel window functions generated by upsampling a Hamming window improves the detection performance by 0.09. However, this window function suffers more from adjacent channel interference than a conventional window. Therefore, this paper also proposes a two step detection scheme to achieve higher detection performance and to avoid the influence of the adjacent channel signal. Numerical results also indicate that the proposed scheme improves the detection performance and reduces the effect from the adjacent channel signal.

  • New Impossible Differential Attack on SAFER Block Cipher Family

    Jingyuan ZHAO  Meiqin WANG  Jiazhe CHEN  Yuliang ZHENG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:3
      Page(s):
    843-852

    SAFER block cipher family consists of SAFER K, SAFER SK, SAFER+ and SAFER++. As the first proposed block cipher of them, SAFER K is strengthened by SAFER SK with improved key schedule. SAFER+ is designed as an AES candidate and Bluetooth uses a customized version of it for security. SAFER++, a variant of SAFER+, is among the cryptographic primitives selected for the second phase of the NESSIE project. In this paper, we take advantage of properties of the linear transformation and S-boxes to identify new impossible differentials for SAFER SK, SAFER+, and SAFER++. Moreover, we give the impossible differential attacks on 4-round SAFER SK/128 and 4-round SAFER+/128(256), 5-round SAFER++/128 and 5.5-round SAFER++/256. Our attacks significantly improve previously known impossible differential attacks on them. Specifically, our attacks on SAFER+ are the best attack in terms of number of rounds.

  • Three-Dimensionally Assembled TES X-ray Microcalorimeter Arrays for a TEM EDS System

    Kenichiro NAGAYOSHI  Kazuhiro SAKAI  Kazuhisa MITSUDA  Noriko Y. YAMASAKI  Yoh TAKEI  Keisuke MAEHATA  Naoko IYOMOTO  Shohei EZAKI  Akira TAKANO  Makoto MAEDA  Toru HARA  

     
    PAPER

      Vol:
    E98-C No:3
      Page(s):
    186-191

    Three-dimensionally assembled TES X-ray microcalorimeter arrays may be utilized for three purposes: (1) to obtain wide X-ray energy coverage of TES microcalorimeters, (2) to distinguish charged particle events from X-ray events, (3) to reconstruct Compton-scattering geometry for hard X-ray Compton cameras. We have designed and fabricated three-dimensionally assembled array of the minimum format i.e. $2 imes 2 imes 2$ array in order to obtain a good energy resolution in a wide energy range of 0.5--20,keV and a high maximum counting rate of 2000,cps for energy dispersive X-ray spectrometer (EDS) system for a transmission electron microscope (TEM). Although we could not obtain required energy resolution because of a problem in the refrigerator system, we confirmed the operation of the three-dimensional array.

  • 50 GHz Demonstration of an Integer-Type Butterfly Processing Circuit for an FFT Processor Using the 10 kA/cm2 Nb Process

    Yosuke SAKASHITA  Yuki YAMANASHI  Nobuyuki YOSHIKAWA  

     
    PAPER

      Vol:
    E98-C No:3
      Page(s):
    232-237

    We are developing a fast Fourier transform (FFT) processor using high-speed and low-power single-flux-quantum (SFQ) circuits. Our main concern is the development of an SFQ butterfly processing circuit, which is the core processing circuit in the FFT processor. In our previous study, we have confirmed the complete operation of an integer-type butterfly processing circuit using the AIST 2.5 kA/cm$^{2}$ Nb standard process at the frequency of 25 GHz. In this study, we have designed an integer-type butterfly processing circuit using the AIST 10,kA/cm$^{2}$,Nb advanced process and confirmed its high-speed operation at the maximum frequency of 50,GHz.

  • Non-orthogonal Multiple Access (NOMA) with Successive Interference Cancellation for Future Radio Access Open Access

    Kenichi HIGUCHI  Anass BENJEBBOUR  

     
    Invited Survey Paper-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    403-414

    This paper presents our investigation of non-orthogonal multiple access (NOMA) as a novel and promising power-domain user multiplexing scheme for future radio access. Based on information theory, we can expect that NOMA with a successive interference canceller (SIC) applied to the receiver side will offer a better tradeoff between system efficiency and user fairness than orthogonal multiple access (OMA), which is widely used in 3.9 and 4G mobile communication systems. This improvement becomes especially significant when the channel conditions among the non-orthogonally multiplexed users are significantly different. Thus, NOMA can be expected to efficiently exploit the near-far effect experienced in cellular environments. In this paper, we describe the basic principle of NOMA in both the downlink and uplink and then present our proposed NOMA scheme for the scenario where the base station is equipped with multiple antennas. Simulation results show the potential system-level throughput gains of NOMA relative to OMA.

  • A Uniformity-Approximated Histogram Equalization Algorithm for Image Enhancement

    Pei-Chen WU  Chang Hong LIN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2014/11/20
      Vol:
    E98-D No:3
      Page(s):
    726-727

    In this letter, we propose a novel Uniformity-Approximated Histogram Equalization (UAHE) algorithm to enhance the image as well as to preserve the image features. First, the UAHE algorithm generates the image histogram and computes the average value of all bins as the histogram threshold. In order to approximate the uniform histogram, the bins of image histograms greater than the above threshold are clipped, and the subtracted counts are averaged and uniformly assigned to the remaining bins lower than the threshold. The approximated uniform histogram is then applied to generate the intensity transformation function for image contrast enhancement. Experimental results show that our algorithm achieves the maximum entropy as well as the feature similarity values for image contrast enhancement.

  • Blind Carrier Frequency Offset Estimation Based on Weighted Subspace Projection Approach for Interleaved OFDMA Uplink

    Ann-Chen CHANG  Chih-Chang SHEN  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    878-880

    This letter deals with the carrier frequency offsets (CFO) estimation problem for orthogonal frequency division multiple access (OFDMA) uplink systems. Combined with centro-symmetric (CS) trimmed autocorrelation matrix and weighting subspace projection, the proposed estimator has better estimate performance than MVDR, MUSIC, CS-MUSIC, and ESPRIT estimators, especially in relatively less of OFDMA blocks and low SNR situations. Simulation results are presented to verify the efficiency of the proposed estimator.

  • Post-Challenge Leakage Resilient Public-Key Cryptosystem in Split State Model

    Eiichiro FUJISAKI  Akinori KAWACHI  Ryo NISHIMAKI  Keisuke TANAKA  Kenji YASUNAGA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E98-A No:3
      Page(s):
    853-862

    Leakage resilient cryptography is often considered in the presence of a very strong leakage oracle: An adversary may submit arbitrary efficiently computable function f to the leakage oracle to receive f(x), where x denotes the entire secret that a party possesses. This model is somewhat too strong in the setting of public-key encryption (PKE). It is known that no secret-key leakage resilient PKE scheme exists if the adversary may have access to the secret-key leakage oracle to receive only one bit after it was given the challenge ciphertext. Similarly, there exists no sender-randomness leakage resilient PKE scheme if one-bit leakage occurs after the target public key was given to the adversary. At TCC 2011, Halevi and Lin have broken the barrier of after-the-fact leakage, by proposing the so-called split state model, where a secret key of a party is explicitly divided into at least two pieces, and the adversary may have not access to the entire secret at once, but each divided pieces, one by one. In the split-state model, they have constructed post-challenge secret-key leakage resilient CPA secure PKEs from hash proof systems, but the construction of CCA secure post-challenge secret-key leakage PKE has remained open. They have also remained open to construct sender-randomness leakage PKE in the split state model. This paper provides a solution to the open issues. We also note that the proposal of Halevi and Lin is post-challenge secret-key leakage CPA secure against a single challenge ciphertext; not against multiple challenges. We present an efficient generic construction that converts any CCA secure PKE scheme into a multiple-challenge CCA secure PKE that simultaneously tolerates post-challenge secret-key and sender-randomness leakage in the split state model, without any additional assumption. In addition, our leakage amount of the resulting schemes is the same as that of Halevi and Lin CPA PKE, i.e., (1/2+γ)l/2 where l denotes the length of the entire secret (key or randomness) and γ denotes a universal (possitive) constant less than 1/2. Our conversion is generic and available for many other public-key primitives. For instance, it can convert any identity-based encryption (IBE) scheme to a post-challenge master-key leakage and sender-randomness leakage secure IBE.

  • Multiple Impossible Differential Cryptanalysis on Reduced FOX

    Xinran LI  Fang-Wei FU  Xuan GUANG  

     
    LETTER-Cryptography and Information Security

      Vol:
    E98-A No:3
      Page(s):
    906-911

    FOX is a family of block ciphers published in 2004 and is famous for its provable security to cryptanalysis. In this paper, we present multiple 4-round impossible differentials and several new results of impossible differential attacks on 5,6,7-round FOX64 and 5-round FOX128 with the multiple differentials and the new early abort technique which shall reduce the data complexity and the time complexity respectively. In terms of the data complexity and the time complexity, our results are better than any of the previously known attacks.

  • Cramer-Rao Bounds for Compressive Frequency Estimation

    Xushan CHEN  Xiongwei ZHANG  Jibin YANG  Meng SUN  Weiwei YANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    874-877

    Compressive sensing (CS) exploits the sparsity or compressibility of signals to recover themselves from a small set of nonadaptive, linear measurements. The number of measurements is much smaller than Nyquist-rate, thus signal recovery is achieved at relatively expense. Thus, many signal processing problems which do not require exact signal recovery have attracted considerable attention recently. In this paper, we establish a framework for parameter estimation of a signal corrupted by additive colored Gaussian noise (ACGN) based on compressive measurements. We also derive the Cramer-Rao lower bound (CRB) for the frequency estimation problems in compressive domain and prove some useful properties of the CRB under different compressive measurements. Finally, we show that the theoretical conclusions are along with experimental results.

  • Detection of S1/S2 Components with Extraction of Murmurs from Phonocardiogram

    Xingri QUAN  Jongwon SEOK  Keunsung BAE  

     
    LETTER-Biological Engineering

      Pubricized:
    2014/11/25
      Vol:
    E98-D No:3
      Page(s):
    745-748

    The simplicity is a type of measurement that represents visual simplicity of a signal, regardless of its amplitude and frequency variation. We propose an algorithm that can detect major components of heart sound using Gaussian regression to the smoothed simplicity profile of a heart sound signal. The weight and spread of the Gaussians are used as features to discriminate cardiac murmurs from major components of a heart sound signal. Experimental results show that the proposed method is very promising for robust and accurate detection of major heart sound components as well as cardiac murmurs.

  • VLSI Implementation of an Interference Canceller Using Dual-Frame Processing for OFDM-IDMA Systems

    Shingo YOSHIZAWA  Mai NOZAKI  Hiroshi TANIMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:3
      Page(s):
    811-819

    Due to increasing demand for machine-to-machine (M2M) communication, simultaneous connections for many terminals are requested for current wireless communication systems. Interleave division multiple access (IDMA) has superior multiuser detection performance and attains high data transmission efficiency in multiuser communications. This paper describes the VLSI implementation of an interference canceller for OFDM-IDMA systems. The conventional architecture decreases a throughput in pipeline processing due to wait time occurring in interleave and deinterleave memory units. The proposed architecture adopts dual-frame processing to solve the problem of the wait time and achieves a high utilization ratio in pipeline stage operation. In the implementation results, the proposed architecture has reduced circuit area and power consumption by 25% and 41% for BPSK demodulation and 33% and 44% for QPSK demodulation compared with the conventional architecture on the same throughput condition.

  • Multidimensional QoE Estimation of Multi-View Video and Audio (MVV-A) IP Transmission

    Toshiro NUNOME  Shuji TASAKA  

     
    PAPER-Multimedia Systems for Communications

      Vol:
    E98-B No:3
      Page(s):
    515-524

    In this paper, we propose a framework for the real-time estimation of a multidimensional QoE of Multi-View Video and Audio (MVV-A) IP transmission. The framework utilizes linear multiple regression analysis with application-level and transport-level QoS parameters which can be measured in real time. In order to cope with a variety of MVV-A usage-situations, we introduce the concept of usage-situation type for grouping usage-situations with similar features to apply a representative regression line. We deal with two contents, two camera arrangements, and two user interfaces for viewpoint change as representative examples of the usage-situations. We assess multidimensional QoE of MVV-A with various types of average load, playout buffering time, and delay in the network. We then conduct the multiple regression analysis for the multidimensional QoE values represented by a psychological scale. From the comparison of measured values and estimated ones, we notice that real-time estimation of QoE is feasible in MVV-A IP transmission.

  • Stealthy Mobile Phone Identity Catcher

    Changqing XU  Fan YANG  Jin TENG  Sumxin JIANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:3
      Page(s):
    494-501

    In this paper, we design a stealthy GSM phone identity catcher. As the GSM protocols do not mandate the authentication of BSes (Base Stations) to MSes (Mobile Stations), fake BSes can be implemented to lure victims to register with and thereby intercept crucial information of the user, including their identities. However, the straightforward implementation of GSM phone identity catcher can be easily perceived by users employing detection software due to such phenomena as phone interface changes and service interruptions. In this paper, we propose several effective mechanisms, such as smart configuration of the fake BSes, quick attachment/detachment and service relay, to make the catching process invisible to users and software. Real world experiments have been conducted and the results prove the efficiency and stealth of our proposed GSM phone identity catcher. We hope our work could help to enhance the effectiveness of IMSI catching attack and thereby alert the industry to design stronger authentication protocol in communication systems.

  • Detecting Anomalies in Massive Traffic Streams Based on S-Transform Analysis of Summarized Traffic Entropies

    Sirikarn PUKKAWANNA  Hiroaki HAZEYAMA  Youki KADOBAYASHI  Suguru YAMAGUCHI  

     
    PAPER-Internet Operation and Management

      Pubricized:
    2014/12/11
      Vol:
    E98-D No:3
      Page(s):
    588-595

    Detecting traffic anomalies is an indispensable component of overall security architecture. As Internet and traffic data with more sophisticated attacks grow exponentially, preserving security with signature-based traffic analyzers or analyzers that do not support massive traffic are not sufficient. In this paper, we propose a novel method based on combined sketch technique and S-transform analysis for detecting anomalies in massive traffic streams. The method does not require any prior knowledge such as attack patterns and models representing normal traffic behavior. To detect anomalies, we summarize the entropy of traffic data over time and maintain the summarized data in sketches. The entropy fluctuation of the traffic data aggregated to the same bucket is observed by S-transform to detect spectral changes referred to as anomalies in this work. We evaluated the performance of the method with real-world backbone traffic collected at the United States and Japan transit link in terms of both accuracy and false positive rates. We also explored the method parameters' influence on detection performance. Furthermore, we compared the performance of our method to S-transform-based and Wavelet-based methods. The results demonstrated that our method was capable of detecting anomalies and overcame both methods. We also found that our method was not sensitive to its parameter settings.

  • Low-Energy Optical-to-Electrical Converters Based on Superconducting Nanowire for Single-Flux-Quantum Circuits Open Access

    Kemmei KAJINO  Shigehito MIKI  Taro YAMASHITA  Hirotaka TERAI  

     
    INVITED PAPER

      Vol:
    E98-C No:3
      Page(s):
    227-231

    We report the energy-efficient optical input interface using NbN superconducting nanowire-based optical-to-electrical (SN-OE) converters for a single-flux-quantum (SFQ) data processing system. The SN-OE converters with small active areas ranging from 1$, imes,$1 to 10$, imes,$10,$mu$m$^2$ were fabricated to improve the recovery time by reducing the kinetic inductance of the nanowire. The SN-OE with the smallest area of 1$, imes,$1 $mu$m$^2$ showed the recovery time of around 0.3 ns, while its detection efficiency for a single photon was reduced below 0.1% due to insufficient coupling efficiency with a single-mode optical fiber. However, the optical power dependence of the error rate of this device showed that the required optical power to achieve the error rate below $10^{-12}$ at 10 GHz operation is as large as 70 $mu$W, which is still one order of magnitude lower than semiconductor photo diodes. We also demonstrated the operation of the SN-OE converters combined with the SFQ readout circuit and confirmed the operating speed up to 77~MHz.

  • Making Joint-Histogram-Based Weighted Median Filter Much Faster

    Hanhoon PARK  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2014/12/12
      Vol:
    E98-D No:3
      Page(s):
    721-725

    In this letter, we propose a simple framework for accelerating a state-of-the-art histogram-based weighted median filter at no expense. It is based on a process of determining the filter processing direction. The determination is achieved by measuring the local feature variation of input images. Through experiments with natural images, it is verified that, depending on input images, the filtering speed can be substantially increased by changing the filtering direction.

  • Development of Array Detectors with Three-Dimensional Structure toward 1000 Pixels of Superconducting Tunnel Junctions

    Go FUJII  Masahiro UKIBE  Shigetomo SHIKI  Masataka OHKUBO  

     
    BRIEF PAPER

      Vol:
    E98-C No:3
      Page(s):
    192-195

    Superconducting tunnel junction (STJ) array detectors can exhibit excellent performance with respect to energy resolution, detection efficiency, and counting rate in the soft X-ray energy range, by which those excellent properties STJ array detectors are well suited for detecting X-rays at synchrotron radiation facilities. However, in order to achieve a high throughput analysis for trace impurity elements such as dopants in structural or functional materials, the sensitive area of STJ array detectors should be further enlarged up to more than 10 times larger by increasing the pixel number in array detectors. In this work, for a large STJ-pixel number of up to 1000 within a 10,mm- square compact chip, we have introduced three-dimensional (3D) structure by embedding a wiring layer in a SiO$_{2}$ isolation layer underneath a base electrode layer of STJs. The 3D structure is necessary for close-packed STJ arrangement, avoiding overlay of lead wiring, which is common in conventional two-dimensional layout. The fabricated STJ showed excellent current-voltage characteristics having low subgap currents less than 2,nA, which are the same as those of conventional STJs. An STJ pixel has an energy resolution of 31,eV (FWHM) for C-K$alpha $ (277,eV).

  • Secure Sets and Defensive Alliances in Graphs: A Faster Algorithm and Improved Bounds

    Kazuyuki AMANO  Kyaw May OO  Yota OTACHI  Ryuhei UEHARA  

     
    PAPER

      Vol:
    E98-D No:3
      Page(s):
    486-489

    Secure sets and defensive alliances in graphs are studied. They are sets of vertices that are safe in some senses. In this paper, we first present a fixed-parameter algorithm for finding a small secure set, whose running time is much faster than the previously known one. We then present improved bound on the smallest sizes of defensive alliances and secure sets for hypercubes. These results settle some open problems paused recently.

3681-3700hit(16314hit)