The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SI(16314hit)

3801-3820hit(16314hit)

  • A Method to Find Linear Decompositions for Incompletely Specified Index Generation Functions Using Difference Matrix

    Tsutomu SASAO  Yuta URANO  Yukihiro IGUCHI  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E97-A No:12
      Page(s):
    2427-2433

    This paper shows a method to find a linear transformation that reduces the number of variables to represent a given incompletely specified index generation function. It first generates the difference matrix, and then finds a minimal set of variables using a covering table. Linear transformations are used to modify the covering table to produce a smaller solution. Reduction of the difference matrix is also considered.

  • Transmitting and Receiving Power-Control Architecture with Beam-Forming Technique for 2D Wireless Power Transmission Systems

    Takahide TERADA  Hiroshi SHINODA  

     
    PAPER-Systems and Control

      Vol:
    E97-A No:12
      Page(s):
    2618-2624

    A two-dimensional (2D) wireless power transmission (WPT) system that handles a wide range of transmitted and received power is proposed and evaluated. A transmitter outputs the power to an arbitrary position on a 2D waveguide sheet by using a beam-forming technique. The 2D waveguide sheet does not require an absorber on its edge. The minimum propagation power on the sheet is increased 18 times by using the beam-forming technique. Power amplifier (PA) efficiency was improved from 19% to 46% when the output power was 10dB smaller than peak power due to the use of a PA supply-voltage and input power control method. Peak PA efficiency was 60%. A receiver inputs a wide range of power levels and drives various load impedances with a parallel rectifier. This rectifier enables a number of rectifying units to be tuned dynamically. The rectifier efficiency was improved 1.5 times while input power range was expanded by 6dB and the load-impedance range was expanded fourfold. The rectifier efficiency was 66-73% over an input power range of 18-36dBm at load impedances of 100 and 400Ω.

  • A Novel Construction of Asymmetric ZCZ Sequence Sets from Interleaving Perfect Sequence

    Longye WANG  Xiaoli ZENG  Hong WEN  

     
    PAPER-Sequences

      Vol:
    E97-A No:12
      Page(s):
    2556-2561

    An asymmetric zero correlation zone (A-ZCZ) sequence set is a type of ZCZ sequence set and consists of multiple sequence subsets. It is the most important property that is the cross-correlation function between arbitrary sequences belonging to different sequence subsets has quite a large zero-cross-correlation zone (ZCCZ). Our proposed A-ZCZ sequence sets can be constructed based on interleaved technique and orthogonality-preserving transformation by any perfect sequence of length P=Nq(2k+1) and Hadamard matrices of order T≥2, where N≥1, q≥1 and k≥1. If q=1, the novel sequence set is optimal ZCZ sequence set, which has parameters (TP,TN,2k+1) for all positive integers P=N(2k+1). The proposed A-ZCZ sequence sets have much larger ZCCZ, which are expected to be useful for designing spreading sequences for QS-CDMA systems.

  • Complex Noisy Independent Component Analysis by Negentropy Maximization

    Guobing QIAN  Liping LI  Hongshu LIAO  

     
    LETTER-Noise and Vibration

      Vol:
    E97-A No:12
      Page(s):
    2641-2644

    The maximization of non-Gaussianity is an effective approach to achieve the complex independent component analysis (ICA) problem. However, the traditional complex maximization of non-Gaussianity (CMN) algorithm does not consider the influence of noise. In this letter, a modification of the fixed-point algorithm is proposed for more practical occasions of the complex noisy ICA model. Simulations show that the proposed method demonstrates significantly improved performance over the traditional CMN algorithm in the noisy ICA model when the sample size is sufficient.

  • Asymptotics of Bayesian Inference for a Class of Probabilistic Models under Misspecification

    Nozomi MIYA  Tota SUKO  Goki YASUDA  Toshiyasu MATSUSHIMA  

     
    PAPER-Prediction

      Vol:
    E97-A No:12
      Page(s):
    2352-2360

    In this paper, sequential prediction is studied. The typical assumptions about the probabilistic model in sequential prediction are following two cases. One is the case that a certain probabilistic model is given and the parameters are unknown. The other is the case that not a certain probabilistic model but a class of probabilistic models is given and the parameters are unknown. If there exist some parameters and some models such that the distributions that are identified by them equal the source distribution, an assumed model or a class of models can represent the source distribution. This case is called that specifiable condition is satisfied. In this study, the decision based on the Bayesian principle is made for a class of probabilistic models (not for a certain probabilistic model). The case that specifiable condition is not satisfied is studied. Then, the asymptotic behaviors of the cumulative logarithmic loss for individual sequence in the sense of almost sure convergence and the expected loss, i.e. redundancy are analyzed and the constant terms of the asymptotic equations are identified.

  • Physical Optics Radiation Integrals with Frequency-Independent Number of Division utilizing Fresnel Zone Number Localization and Adaptive Sampling Method

    Takayuki KOHAMA  Makoto ANDO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E97-C No:12
      Page(s):
    1134-1141

    The physical optics (PO) approximation is one of the widely-used techniques to calculate scattering fields with a reasonable accuracy in the high frequency region. The computational load of PO radiation integral dramatically increases at higher frequencies since it is proportional to the electrical size of scatterer. In order to suppress this load, a variety of techniques, such as the asymptotic evaluation by the stationary phase method (SP), the equivalent edge currents (EECs), the low-order polynomial expansion method and the fast physical optics (FPO), have been proposed and developed. The adaptive sampling method (ASM) proposed by Burkholder is also one of the techniques where the sampling points in radiation integral should be adaptively determined based upon the phase change of integrand. We proposed a quite different approach named ``Localization of the radiation integrals.'' This localization method suggests that only the small portions of the integration with a slow phase change contribute to the scattering field. In this paper, we newly introduce the ASM in the localization method and applied the proposed method into the radar cross section (RCS) analysis of 2-dimensional strip and cylinder. We have confirmed that the proposed method provides the frequency-independent number of division in the radiation integrals and computational time and accuracy. As the starting point for extension to 3-D case, the application of the proposed method for a reflection from an infinite PEC plane and a part of sphere was also examined.

  • Optimal Threshold Configuration Methods for Flow Admission Control with Cooperative Users

    Sumiko MIYATA  Katsunori YAMAOKA  Hirotsugu KINOSHITA  

     
    PAPER-Network

      Vol:
    E97-B No:12
      Page(s):
    2706-2719

    We have proposed a novel call admission control (CAC) method for maximizing total user satisfaction in a heterogeneous traffic network and showed their effectiveness by using the optimal threshold from numerical analysis [1],[2]. With these CAC methods, it is assumed that only selfish users exist in a network. However, we need to consider the possibility that some cooperative users exist who would agree to reduce their requested bandwidth to improve another user's Quality of Service (QoS). Under this assumption, conventional CAC may not be optimal. If there are cooperative users in the network, we need control methods that encourage such user cooperation. However, such “encourage” control methods have not yet been proposed. Therefore, in this paper, we propose novel CAC methods for cooperative users by using queueing theory. Numerical analyses show their effectiveness. We also analyze the characteristics of the optimal control parameter of the threshold.

  • 3-Dimensional Imaging and Motion Estimation Method of Multiple Moving Targets for Multi-Static UWB Radar Using Target Point and Its Normal Vector

    Ryo YAMAGUCHI  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    PAPER-Sensing

      Vol:
    E97-B No:12
      Page(s):
    2819-2829

    Radar systems using ultra-wideband (UWB) signals have definitive advantages in high range resolution. These are suitable for accurate 3-dimensional (3-D) sensing by rescue robots operating in disaster zone settings, where optical sensing is not applicable because of thick smog or high-density gas. For such applications, where no a priori information of target shape and position is given, an accurate method for 3-D imaging and motion estimation is strongly required for effective target recognition. In addressing this issue, we have already proposed a non-parametric 2-dimensional (2-D) imaging method for a target with arbitrary target shape and motion including rotation and translation being tracked using a multi-static radar system. This is based on matching target boundary points obtained using the range points migration (RPM) method extended to the multi-static radar system. Whereas this method accomplishes accurate imaging and motion estimation for single targets, accuracy is degraded severely for multiple targets, due to interference effects. For a solution of this difficulty, this paper proposes a method based on a novel matching scheme using not only target points but also normal vectors on the target boundary estimated by the Envelope method; interference effects are effectively suppressed when incorporating the RPM approach. Results from numerical simulations for both 2-D and 3-D models show that the proposed method simultaneously achieves accurate target imaging and motion tracking, even for multiple moving targets.

  • Synthesis Algorithm for Parallel Index Generator

    Yusuke MATSUNAGA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E97-A No:12
      Page(s):
    2451-2458

    The index generation function is a multi-valued logic function which checks if the given input vector is a registered or not, and returns its index value if the vector is registered. If the latency of the operation is critical, dedicated hardware is used for implementing the index generation functions. This paper proposes a method implementing the index generation functions using parallel index generator. A novel and efficient algorithm called ‘conflict free partitioning’ is proposed to synthesize parallel index generators. Experimental results show the proposed method outperforms other existing methods. Also, A novel architecture of index generator which is suitable for parallelized implementation is introduced. A new architecture has advantages in the sense of both area and delay.

  • On the Wyner-Ziv Source Coding Problem with Unknown Delay

    Tetsunao MATSUTA  Tomohiko UYEMATSU  

     
    PAPER-Shannon Theory

      Vol:
    E97-A No:12
      Page(s):
    2288-2299

    In this paper, we consider the lossy source coding problem with delayed side information at the decoder. We assume that delay is unknown but the maximum of delay is known to the encoder and the decoder, where we allow the maximum of delay to change with the block length. In this coding problem, we show an upper bound and a lower bound of the rate-distortion (RD) function, where the RD function is the infimum of rates of codes in which the distortion between the source sequence and the reproduction sequence satisfies a certain distortion level. We also clarify that the upper bound coincides with the lower bound when maximums of delay per block length converge to a constant. Then, we give a necessary and sufficient condition in which the RD function is equal to that for the case without delay. Furthermore, we give an example of a source which does not satisfy this necessary and sufficient condition.

  • Minimum Linear Complexity Approximation of Sequences with Period qn-1 over Fq

    Minghui YANG  Dongdai LIN  Minjia SHI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:12
      Page(s):
    2667-2670

    The stability theory of stream ciphers plays an important role in designing good stream cipher systems. Two algorithms are presented, to determine the optimal shift and the minimum linear complexity of the sequence, that differs from a given sequence over Fq with period qn-1 by one digit. We also describe how the linear complexity changes with respect to one digit differing from a given sequence.

  • Minimization of the Fabrication Cost for a Bridged-Bus-Based TDMA System under Hard Real-Time Constraints

    Makoto SUGIHARA  

     
    PAPER-Network

      Vol:
    E97-D No:12
      Page(s):
    3041-3051

    Industrial applications such as automotive ones require a cheap communication mechanism to send out communication messages from node to node by their deadline time. This paper presents a design paradigm in which we optimize both assignment of a network node to a bus and slot multiplexing of a FlexRay network system under hard real-time constraints so that we can minimize the cost of wire harness for the FlexRay network system. We present a cost minimization problem as a non-linear model. We developed a network synthesis tool which was based on simulated annealing. Our experimental results show that our design paradigm achieved a 50.0% less cost than a previously proposed approach for a virtual cost model.

  • A Novel High-Performance Heuristic Algorithm with Application to Physical Design Optimization

    Yiqiang SHENG  Atsushi TAKAHASHI  

     
    PAPER-Physical Level Design

      Vol:
    E97-A No:12
      Page(s):
    2418-2426

    In this paper, a novel high-performance heuristic algorithm, named relay-race algorithm (RRA), which was proposed to approach a global optimal solution by exploring similar local optimal solutions more efficiently within shorter runtime for NP-hard problem is investigated. RRA includes three basic parts: rough search, focusing search and relay. The rough search is designed to get over small hills on the solution space and to approach a local optimal solution as fast as possible. The focusing search is designed to reach the local optimal solution as close as possible. The relay is to escape from the local optimal solution in only one step and to maintain search continuity simultaneously. As one of typical applications, multi-objective placement problem in physical design optimization is solved by the proposed RRA. In experiments, it is confirmed that the computational performance is considerably improved. RRA achieves overall Pareto improvement of two conflicting objectives: power consumption and maximal delay. RRA has its potential applications to improve the existing search methods for more hard problems.

  • ILP Based Multithreaded Code Generation for Simulink Model

    Kai HUANG  Min YU  Xiaomeng ZHANG  Dandan ZHENG  Siwen XIU  Rongjie YAN  Kai HUANG  Zhili LIU  Xiaolang YAN  

     
    PAPER-Architecture

      Vol:
    E97-D No:12
      Page(s):
    3072-3082

    The increasing complexity of embedded applications and the prevalence of multiprocessor system-on-chip (MPSoC) introduce a great challenge for designers on how to achieve performance and programmability simultaneously in embedded systems. Automatic multithreaded code generation methods taking account of performance optimization techniques can be an effective solution. In this paper, we consider the issue of increasing processor utilization and reducing communication cost during multithreaded code generation from Simulink models to improve system performance. We propose a combination of three-layered multithreaded software with Integer Linear Programming (ILP) based design-time mapping and scheduling policies to get optimal performance. The hierarchical software with a thread layer increases processor usage, while the mapping and scheduling policies formulate a group of integer linear programming formulations to minimize communication cost as well as to maximize performance. Experimental results demonstrate the advantages of the proposed techniques on performance improvements.

  • Edge-over-Erosion Error Prediction Method Based on Multi-Level Machine Learning Algorithm

    Daisuke FUKUDA  Kenichi WATANABE  Naoki IDANI  Yuji KANAZAWA  Masanori HASHIMOTO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E97-A No:12
      Page(s):
    2373-2382

    As VLSI process node continue to shrink, chemical mechanical planarization (CMP) process for copper interconnect has become an essential technique for enabling many-layer interconnection. Recently, Edge-over-Erosion error (EoE-error), which originates from overpolishing and could cause yield loss, is observed in various CMP processes, while its mechanism is still unclear. To predict these errors, we propose an EoE-error prediction method that exploits machine learning algorithms. The proposed method consists of (1) error analysis stage, (2) layout parameter extraction stage, (3) model construction stage and (4) prediction stage. In the error analysis and parameter extraction stages, we analyze test chips and identify layout parameters which have an impact on EoE phenomenon. In the model construction stage, we construct a prediction model using the proposed multi-level machine learning method, and do predictions for designed layouts in the prediction stage. Experimental results show that the proposed method attained 2.7∼19.2% accuracy improvement of EoE-error prediction and 0.8∼10.1% improvement of non-EoE-error prediction compared with general machine learning methods. The proposed method makes it possible to prevent unexpected yield loss by recognizing EoE-errors before manufacturing.

  • A Friendly Image Sharing Method

    Tsung-Ming LO  

     
    LETTER-Image

      Vol:
    E97-A No:12
      Page(s):
    2684-2687

    This image sharing method is a secure way of protecting the security of the secret images. In 2011, Wang et al. proposed an image sharing method with verification. The idea of the method is to embed the secret and the watermark images into two shares by two equations to achieve the goal of the secret sharing. However, the constructed shares are meaningless images which are difficult to manage. Authors utilize the algorithm of the torus automorphism to increase the security of the shares. However, the algorithm of the torus automorphism must take much time to encrypt and decrypt an image. This paper proposes a friendly image sharing method to improve the above problem. Experimental results show the significant efficiency of the proposed method.

  • On Renyi Entropies and Their Applications to Guessing Attacks in Cryptography

    Serdar BOZTAS  

     
    INVITED PAPER

      Vol:
    E97-A No:12
      Page(s):
    2542-2548

    We consider single and multiple attacker scenarios in guessing and obtain bounds on various success parameters in terms of Renyi entropies. We also obtain a new derivation of the union bound.

  • KeyQ: A Dynamic Key Establishment Method Using an RFID Anti-Collision Protocol

    You Sung KANG  Dong-Jo PARK  Daniel W. ENGELS  Dooho CHOI  

     
    LETTER-Cryptography and Information Security

      Vol:
    E97-A No:12
      Page(s):
    2662-2666

    We present a dynamic key generation method, KeyQ, for establishing shared secret keys in EPCglobal Generation 2 (Gen2) compliant systems. Widespread adoption of Gen2 technologies has increased the need for protecting communications in these systems. The highly constrained resources on Gen2 tags limit the usability of traditional key distribution techniques. Dynamic key generation provides a secure method to protect communications with limited key distribution requirements. Our KeyQ method dynamically generates fresh secret keys based on the Gen2 adaptive Q algorithm. We show that the KeyQ method generates fresh and unique secret keys that cannot be predicted with probability greater than 10-250 when the number of tags exceeds 100.

  • Perception of Image Characteristics with Compressive Measurements

    Jie GUO  Bin SONG  Fang TIAN  Haixiao LIU  Hao QIN  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2014/09/22
      Vol:
    E97-D No:12
      Page(s):
    3234-3235

    For compressed sensing, to address problems which do not involve reconstruction, a correlation analysis between measurements and the transform coefficients is proposed. It is shown that there is a linear relationship between them, which indicates that we can abstract the inner property of images directly in the measurement domain.

  • Scan-Based Side-Channel Attack on the LED Block Cipher Using Scan Signatures

    Mika FUJISHIRO  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E97-A No:12
      Page(s):
    2434-2442

    LED (Light Encryption Device) block cipher, one of lightweight block ciphers, is very compact in hardware. Its encryption process is composed of AES-like rounds. Recently, a scan-based side-channel attack is reported which retrieves the secret information inside the cryptosystem utilizing scan chains, one of design-for-test techniques. In this paper, a scan-based attack method on the LED block cipher using scan signatures is proposed. In our proposed method, we focus on a particular 16-bit position in scanned data obtained from an LED LSI chip and retrieve its secret key using scan signatures. Experimental results show that our proposed method successfully retrieves its 64-bit secret key using 36 plaintexts on average if the scan chain is only connected to the LED block cipher. These experimental results also show the key is successfully retrieved even if the scan chain includes additional 130,000 1-bit data.

3801-3820hit(16314hit)