The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] SOL(791hit)

1-20hit(791hit)

  • GaN Solid State Power Amplifiers for Microwave Power Transfer and Microwave Heating Open Access

    Koji YAMANAKA  Kazuhiro IYOMASA  Takumi SUGITANI  Eigo KUWATA  Shintaro SHINJO  

     
    INVITED PAPER

      Pubricized:
    2024/04/09
      Vol:
    E107-C No:10
      Page(s):
    292-298

    GaN solid state power amplifiers (SSPA) for wireless power transfer and microwave heating have been reviewed. For wireless power transfer, 9 W output power with 79% power added efficiency at 5.8 GHz has been achieved. For microwave heating, 450 W output power with 70% drain efficiency at 2.45 GHz has been achieved. Microwave power concentration and uniform microwave heating by phase control of multiple SSPAs are demonstrated.

  • A Channel Contrastive Attention-Based Local-Nonlocal Mutual Block on Super-Resolution Open Access

    Yuhao LIU  Zhenzhong CHU  Lifei WEI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2024/04/23
      Vol:
    E107-D No:9
      Page(s):
    1219-1227

    In the realm of Single Image Super-Resolution (SISR), the meticulously crafted Nonlocal Sparse Attention-based block demonstrates its efficacy in noise reduction and computational cost reduction for nonlocal (global) features. However, it neglect the traditional Convolutional-based block, which proficient in handling local features. Thus, merging both the Nonlocal Sparse Attention-based block and the Convolutional-based block to concurrently manage local and nonlocal features poses a significant challenge. To tackle the aforementioned issues, this paper introduces the Channel Contrastive Attention-based Local-Nonlocal Mutual block (CCLN) for Super-Resolution (SR). (1) We introduce the CCLN block, encompassing the Local Sparse Convolutional-based block for local features and the Nonlocal Sparse Attention-based network block for nonlocal features. (2) We introduce Channel Contrastive Attention (CCA) blocks, incorporating Sparse Aggregation into Convolutional-based blocks. Additionally, we introduce a robust framework to fuse these two blocks, ensuring that each branch operates according to its respective strengths. (3) The CCLN block can seamlessly integrate into established network backbones like the Enhanced Deep Super-Resolution network (EDSR), achieving in the Channel Attention based Local-Nonlocal Mutual Network (CCLNN). Experimental results show that our CCLNN effectively leverages both local and nonlocal features, outperforming other state-of-the-art algorithms.

  • A Dual-Branch Algorithm for Semantic-Focused Face Super-Resolution Reconstruction Open Access

    Qi QI  Liuyi MENG  Ming XU  Bing BAI  

     
    LETTER-Image

      Pubricized:
    2024/03/18
      Vol:
    E107-A No:8
      Page(s):
    1435-1439

    In face super-resolution reconstruction, the interference caused by the texture and color of the hair region on the details and contours of the face region can negatively affect the reconstruction results. This paper proposes a semantic-based, dual-branch face super-resolution algorithm to address the issue of varying reconstruction complexities and mutual interference among different pixel semantics in face images. The algorithm clusters pixel semantic data to create a hierarchical representation, distinguishing between facial pixel regions and hair pixel regions. Subsequently, independent image enhancement is applied to these distinct pixel regions to mitigate their interference, resulting in a vivid, super-resolution face image.

  • Effects of Parasitic Elements on L-Type LC/CL Matching Circuits Open Access

    Satoshi TANAKA  Takeshi YOSHIDA  Minoru FUJISHIMA  

     
    PAPER

      Pubricized:
    2023/11/07
      Vol:
    E107-A No:5
      Page(s):
    719-726

    L-type LC/CL matching circuits are well known for their simple analytical solutions and have been applied to many radio-frequency (RF) circuits. When actually constructing a circuit, parasitic elements are added to inductors and capacitors. Therefore, each L and C element has a self-resonant frequency, which affects the characteristics of the matching circuit. In this paper, the parallel parasitic capacitance to the inductor and the series parasitic inductor to the capacitance are taken up as parasitic elements, and the details of the effects of the self-resonant frequency of each element on the S11, voltage standing wave ratio (VSWR) and S21 characteristics are reported. When a parasitic element is added, each characteristic basically tends to deteriorate as the self-resonant frequency decreases. However, as an interesting feature, we found that the combination of resonant frequencies determines the VSWR and passband characteristics, regardless of whether it is the inductor or the capacitor.

  • A Small-Data Solution to Data-Driven Lyapunov Equations: Data Reduction from O(n2) to O(n) Open Access

    Keitaro TSUJI  Shun-ichi AZUMA  Ikumi BANNO  Ryo ARIIZUMI  Toru ASAI  Jun-ichi IMURA  

     
    PAPER

      Pubricized:
    2023/10/24
      Vol:
    E107-A No:5
      Page(s):
    806-812

    When a mathematical model is not available for a dynamical system, it is reasonable to use a data-driven approach for analysis and control of the system. With this motivation, the authors have recently developed a data-driven solution to Lyapunov equations, which uses not the model but the data of several state trajectories of the system. However, the number of state trajectories to uniquely determine the solution is O(n2) for the dimension n of the system. This prevents us from applying the method to a case with a large n. Thus, this paper proposes a novel class of data-driven Lyapunov equations, which requires a smaller amount of data. Although the previous method constructs one scalar equation from one state trajectory, the proposed method constructs three scalar equations from any combination of two state trajectories. Based on this idea, we derive data-driven Lyapunov equations such that the number of state trajectories to uniquely determine the solution is O(n).

  • An Extension of Physical Optics Approximation for Dielectric Wedge Diffraction for a TM-Polarized Plane Wave Open Access

    Duc Minh NGUYEN  Hiroshi SHIRAI  Se-Yun KIM  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/11/08
      Vol:
    E107-C No:5
      Page(s):
    115-123

    In this study, the edge diffraction of a TM-polarized electromagnetic plane wave by two-dimensional dielectric wedges has been analyzed. An asymptotic solution for the radiation field has been derived from equivalent electric and magnetic currents which can be determined by the geometrical optics (GO) rays. This method may be regarded as an extended version of physical optics (PO). The diffracted field has been represented in terms of cotangent functions whose singularity behaviors are closely related to GO shadow boundaries. Numerical calculations are performed to compare the results with those by other reference solutions, such as the hidden rays of diffraction (HRD) and a numerical finite-difference time-domain (FDTD) simulation. Comparisons of the diffraction effect among these results have been made to propose additional lateral waves in the denser media.

  • Investigating the Efficacy of Partial Decomposition in Kit-Build Concept Maps for Reducing Cognitive Load and Enhancing Reading Comprehension Open Access

    Nawras KHUDHUR  Aryo PINANDITO  Yusuke HAYASHI  Tsukasa HIRASHIMA  

     
    PAPER-Educational Technology

      Pubricized:
    2024/01/11
      Vol:
    E107-D No:5
      Page(s):
    714-727

    This study investigates the efficacy of a partial decomposition approach in concept map recomposition tasks to reduce cognitive load while maintaining the benefits of traditional recomposition approaches. Prior research has demonstrated that concept map recomposition, involving the rearrangement of unconnected concepts and links, can enhance reading comprehension. However, this task often imposes a significant burden on learners’ working memory. To address this challenge, this study proposes a partial recomposition approach where learners are tasked with recomposing only a portion of the concept map, thereby reducing the problem space. The proposed approach aims at lowering the cognitive load while maintaining the benefits of traditional recomposition task, that is, learning effect and motivation. To investigate the differences in cognitive load, learning effect, and motivation between the full decomposition (the traditional approach) and partial decomposition (the proposed approach), we have conducted an experiment (N=78) where the participants were divided into two groups of “full decomposition” and “partial decomposition”. The full decomposition group was assigned the task of recomposing a concept map from a set of unconnected concept nodes and links, while the partial decomposition group worked with partially connected nodes and links. The experimental results show a significant reduction in the embedded cognitive load of concept map recomposition across different dimensions while learning effect and motivation remained similar between the conditions. On the basis of these findings, educators are recommended to incorporate partially disconnected concept maps in recomposition tasks to optimize time management and sustain learner motivation. By implementing this approach, instructors can conserve cognitive resources and allocate saved energy and time to other activities that enhance the overall learning process.

  • Conversational AI as a Facilitator Improves Participant Engagement and Problem-Solving in Online Discussion: Sharing Evidence from Five Cities in Afghanistan Open Access

    Sofia SAHAB  Jawad HAQBEEN  Takayuki ITO  

     
    PAPER

      Pubricized:
    2024/01/15
      Vol:
    E107-D No:4
      Page(s):
    434-442

    Despite the increasing use of conversational artificial intelligence (AI) in online discussion environments, few studies explore the application of AI as a facilitator in forming problem-solving debates and influencing opinions in cross-venue scenarios, particularly in diverse and war-ravaged countries. This study aims to investigate the impact of AI on enhancing participant engagement and collaborative problem-solving in online-mediated discussion environments, especially in diverse and heterogeneous discussion settings, such as the five cities in Afghanistan. We seek to assess the extent to which AI participation in online conversations succeeds by examining the depth of discussions and participants' contributions, comparing discussions facilitated by AI with those not facilitated by AI across different venues. The results are discussed with respect to forming and changing opinions with and without AI-mediated communication. The findings indicate that the number of opinions generated in AI-facilitated discussions significantly differs from discussions without AI support. Additionally, statistical analyses reveal quantitative disparities in online discourse sentiments when conversational AI is present compared to when it is absent. These findings contribute to a better understanding of the role of AI-mediated discussions and offer several practical and social implications, paving the way for future developments and improvements.

  • Variable-Length Orthogonal Codes over Finite Fields Realizing Data Multiplexing and Error Correction Coding Simultaneously

    Shoichiro YAMASAKI  Tomoko K. MATSUSHIMA  Kyohei ONO  Hirokazu TANAKA  

     
    PAPER-Coding Theory and Techniques

      Pubricized:
    2023/09/26
      Vol:
    E107-A No:3
      Page(s):
    373-383

    The present study proposes a scheme in which variable-length orthogonal codes generated by combining inverse discrete Fourier transform matrices over a finite field multiplex user data into a multiplexed sequence and its sequence forms one or a plural number of codewords for Reed-Solomon coding. The proposed scheme realizes data multiplexing, error correction coding, and multi-rate transmitting at the same time. This study also shows a design example and its performance analysis of the proposed scheme.

  • Re-Evaluating Syntax-Based Negation Scope Resolution

    Asahi YOSHIDA  Yoshihide KATO  Shigeki MATSUBARA  

     
    LETTER-Natural Language Processing

      Pubricized:
    2023/10/16
      Vol:
    E107-D No:1
      Page(s):
    165-168

    Negation scope resolution is the process of detecting the negated part of a sentence. Unlike the syntax-based approach employed in previous researches, state-of-the-art methods performed better without the explicit use of syntactic structure. This work revisits the syntax-based approach and re-evaluates the effectiveness of syntactic structure in negation scope resolution. We replace the parser utilized in the prior works with state-of-the-art parsers and modify the syntax-based heuristic rules. The experimental results demonstrate that the simple modifications enhance the performance of the prior syntax-based method to the same level as state-of-the-art end-to-end neural-based methods.

  • Giving a Quasi-Initial Solution to Ising Machines by Controlling External Magnetic Field Coefficients

    Soma KAWAKAMI  Kentaro OHNO  Dema BA  Satoshi YAGI  Junji TERAMOTO  Nozomu TOGAWA  

     
    PAPER

      Pubricized:
    2023/08/16
      Vol:
    E107-A No:1
      Page(s):
    52-62

    Ising machines can find optimum or quasi-optimum solutions of combinatorial optimization problems efficiently and effectively. It is known that, when a good initial solution is given to an Ising machine, we can finally obtain a solution closer to the optimal solution. However, several Ising machines cannot directly accept an initial solution due to its computational nature. In this paper, we propose a method to give quasi-initial solutions into Ising machines that cannot directly accept them. The proposed method gives the positive or negative external magnetic field coefficients (magnetic field controlling term) based on the initial solutions and obtains a solution by using an Ising machine. Then, the magnetic field controlling term is re-calculated every time an Ising machine repeats the annealing process, and hence the solution is repeatedly improved on the basis of the previously obtained solution. The proposed method is applied to the capacitated vehicle routing problem with an additional constraint (constrained CVRP) and the max-cut problem. Experimental results show that the total path distance is reduced by 5.78% on average compared to the initial solution in the constrained CVRP and the sum of cut-edge weight is increased by 1.25% on average in the max-cut problem.

  • Optimal (r, δ)-Locally Repairable Codes from Reed-Solomon Codes

    Lin-Zhi SHEN  Yu-Jie WANG  

     
    LETTER-Coding Theory

      Pubricized:
    2023/05/30
      Vol:
    E106-A No:12
      Page(s):
    1589-1592

    For an [n, k, d] (r, δ)-locally repairable codes ((r, δ)-LRCs), its minimum distance d satisfies the Singleton-like bound. The construction of optimal (r, δ)-LRC, attaining this Singleton-like bound, is an important research problem in recent years for thier applications in distributed storage systems. In this letter, we use Reed-Solomon codes to construct two classes of optimal (r, δ)-LRCs. The optimal LRCs are given by the evaluations of multiple polynomials of degree at most r - 1 at some points in Fq. The first class gives the [(r + δ - 1)t, rt - s, δ + s] optimal (r, δ)-LRC over Fq provided that r + δ + s - 1≤q, s≤δ, s

  • Fine Feature Analysis of Metal Plate Based on Two-Dimensional Imaging under Non-Ideal Scattering

    Xiaofan LI  Bin DENG  Qiang FU  Hongqiang WANG  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/05/29
      Vol:
    E106-C No:12
      Page(s):
    789-798

    The ideal point scattering model requires that each scattering center is isotropic, the position of the scattering center corresponding to the target remains unchanged, and the backscattering amplitude and phase of the target do not change with the incident frequency and incident azimuth. In fact, these conditions of the ideal point scattering model are difficult to meet, and the scattering models are not ideal in most cases. In order to understand the difference between non-ideal scattering center and ideal scattering center, this paper takes a metal plate as the research object, carries out two-dimensional imaging of the metal plate, compares the difference between the imaging position and the theoretical target position, and compares the shape of the scattering center obtained from two-dimensional imaging of the plate from different angles. From the experimental results, the offset between the scattering center position and the theoretical target position corresponding to the two-dimensional imaging of the plate under the non-ideal point scattering model is less than the range resolution and azimuth resolution. The deviation between the small angle two-dimensional imaging position and the theoretical target position using the ideal point scattering model is small, and the ideal point scattering model is still suitable for the two-dimensional imaging of the plate. In the imaging process, the ratio of range resolution and azimuth resolution affects the shape of the scattering center. The range resolution is equal to the azimuth resolution, the shape of the scattering center is circular; the range resolution is not equal to the azimuth resolution, and the shape of the scattering center is elliptic. In order to obtain more accurate two-dimensional image, the appropriate range resolution and azimuth resolution can be considered when using the ideal point scattering model for two-dimensional imaging. The two-dimensional imaging results of the plate at different azimuth and angle can be used as a reference for the study of non-ideal point scattering model.

  • Gain and Output Optimization Scheme for Block Low-Resolution DACs in Massive MIMO Downlink

    Taichi YAMAKADO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1200-1209

    In this paper, a nonlinear quantized precoding scheme for low-resolution digital-analog converters (DACs) in a massive multiple-input multiple-output (MIMO) system is proposed. The nonlinear quantized precoding determines transmit antenna outputs with a transmit symbol and channel state information. In a full-digital massive MIMO system, low-resolution DACs are used to suppress power consumption. Conventional precoding algorithms for low-resolution DACs do not optimize transmit antenna gains individually. Thus, in this paper, a precoding scheme that optimizes individual transmit antenna gains as well as the DAC outputs is proposed. In the proposed scheme, the subarray of massive MIMO antennas is treated virtually as a single antenna element. Numerical results obtained through computer simulation show that the proposed precoding scheme achieves bit error rate performance close to that of the conventional precoding scheme with much smaller antenna gains on a CDL-A channel.

  • Brain Tumor Classification using Under-Sampled k-Space Data: A Deep Learning Approach

    Tania SULTANA  Sho KUROSAKI  Yutaka JITSUMATSU  Shigehide KUHARA  Jun'ichi TAKEUCHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/08/15
      Vol:
    E106-D No:11
      Page(s):
    1831-1841

    We assess how well the recently created MRI reconstruction technique, Multi-Resolution Convolutional Neural Network (MRCNN), performs in the core medical vision field (classification). The primary goal of MRCNN is to identify the best k-space undersampling patterns to accelerate the MRI. In this study, we use the Figshare brain tumor dataset for MRI classification with 3064 T1-weighted contrast-enhanced MRI (CE-MRI) over three categories: meningioma, glioma, and pituitary tumors. We apply MRCNN to the dataset, which is a method to reconstruct high-quality images from under-sampled k-space signals. Next, we employ the pre-trained VGG16 model, which is a Deep Neural Network (DNN) based image classifier to the MRCNN restored MRIs to classify the brain tumors. Our experiments showed that in the case of MRCNN restored data, the proposed brain tumor classifier achieved 92.79% classification accuracy for a 10% sampling rate, which is slightly higher than that of SRCNN, MoDL, and Zero-filling methods have 91.89%, 91.89%, and 90.98% respectively. Note that our classifier was trained using the dataset consisting of the images with full sampling and their labels, which can be regarded as a model of the usual human diagnostician. Hence our results would suggest MRCNN is useful for human diagnosis. In conclusion, MRCNN significantly enhances the accuracy of the brain tumor classification system based on the tumor location using under-sampled k-space signals.

  • Decentralized Incentive Scheme for Peer-to-Peer Video Streaming using Solana Blockchain

    Yunqi MA  Satoshi FUJITA  

     
    PAPER-Information Network

      Pubricized:
    2023/07/13
      Vol:
    E106-D No:10
      Page(s):
    1686-1693

    Peer-to-peer (P2P) technology has gained popularity as a way to enhance system performance. Nodes in a P2P network work together by providing network resources to one another. In this study, we examine the use of P2P technology for video streaming and develop a distributed incentive mechanism to prevent free-riding. Our proposed solution combines WebTorrent and the Solana blockchain and can be accessed through a web browser. To incentivize uploads, some of the received video chunks are encrypted using AES. Smart contracts on the blockchain are used for third-party verification of uploads and for managing access to the video content. Experimental results on a test network showed that our system can encrypt and decrypt chunks in about 1/40th the time it takes using WebRTC, without affecting the quality of video streaming. Smart contracts were also found to quickly verify uploads in about 860 milliseconds. The paper also explores how to effectively reward virtual points for uploads.

  • Distilling Distribution Knowledge in Normalizing Flow

    Jungwoo KWON  Gyeonghwan KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/04/26
      Vol:
    E106-D No:8
      Page(s):
    1287-1291

    In this letter, we propose a feature-based knowledge distillation scheme which transfers knowledge between intermediate blocks of teacher and student with flow-based architecture, specifically Normalizing flow in our implementation. In addition to the knowledge transfer scheme, we examine how configuration of the distillation positions impacts on the knowledge transfer performance. To evaluate the proposed ideas, we choose two knowledge distillation baseline models which are based on Normalizing flow on different domains: CS-Flow for anomaly detection and SRFlow-DA for super-resolution. A set of performance comparison to the baseline models with popular benchmark datasets shows promising results along with improved inference speed. The comparison includes performance analysis based on various configurations of the distillation positions in the proposed scheme.

  • Toward Predictive Modeling of Solar Power Generation for Multiple Power Plants Open Access

    Kundjanasith THONGLEK  Kohei ICHIKAWA  Keichi TAKAHASHI  Chawanat NAKASAN  Kazufumi YUASA  Tadatoshi BABASAKI  Hajimu IIDA  

     
    PAPER-Energy in Electronics Communications

      Pubricized:
    2022/12/22
      Vol:
    E106-B No:7
      Page(s):
    547-556

    Solar power is the most widely used renewable energy source, which reduces pollution consequences from using conventional fossil fuels. However, supplying stable power from solar power generation remains challenging because it is difficult to forecast power generation. Accurate prediction of solar power generation would allow effective control of the amount of electricity stored in batteries, leading in a stable supply of electricity. Although the number of power plants is increasing, building a solar power prediction model for a newly constructed power plant usually requires collecting a new training dataset for the new power plant, which takes time to collect a sufficient amount of data. This paper aims to develop a highly accurate solar power prediction model for multiple power plants available for both new and existing power plants. The proposed method trains the model on existing multiple power plants to generate a general prediction model, and then uses it for a new power plant while waiting for the data to be collected. In addition, the proposed method tunes the general prediction model on the newly collected dataset and improves the accuracy for the new power plant. We evaluated the proposed method on 55 power plants in Japan with the dataset collected for two and a half years. As a result, the pre-trained models of our proposed method significantly reduces the average RMSE of the baseline method by 73.19%. This indicates that the model can generalize over multiple power plants, and training using datasets from other power plants is effective in reducing the RMSE. Fine-tuning the pre-trained model further reduces the RMSE by 8.12%.

  • Effects of Potassium Doping on the Active Layer of Inverse-Structured Perovskite Solar Cells Open Access

    Tatsuya KATO  Yusuke ICHINO  Tatsuo MORI  Yoshiyuki SEIKE  

     
    PAPER

      Pubricized:
    2023/01/18
      Vol:
    E106-C No:6
      Page(s):
    220-227

    In this report, solar cell characteristics were evaluated by doping the active layer CH3NH3PbI3 (MAPbI3) with 3.0 vol% and 6.0 vol% of potassium ion (KI) in an inverse-structured perovskite solar cells (PSCs). The Tauc plots of the absorbance characteristics and the ionization potential characteristics show that the top end of the valence band shifted by 0.21eV in the shallow direction from -5.34eV to -5.13eV, and the energy band gap decreased from 1.530eV to 1.525eV. Also, the XRD measurements show that the lattice constant decreased from 8.96Å to 8.93Å when KI was doped. The decrease in the lattice constant indicates that a part of the A site is replaced from methylammonium ion (MAI) to KI. In the J-V characteristics of the solar cell, the mean value of Jsc improved from 7.0mA/cm2 without KI to 8.8mA/cm2 with 3.0 vol% of KI doped and to 10.2mA/cm2 with 6.0 vol% of KI doped. As a result, the mean value of power-conversion efficiency (PCE) without KI was 3.5%, but the mean value of PCE improved to 5.2% with 3.0 vol% of KI doped and to 4.5% with 6.0 vol% of KI doped. Thus, it has shown that it is effective to dope KI to MAIPBI3, which serves as the active layer, even in the inverse-structured PSCs.

  • Time-Resolved Observation of Organic Light Emitting Diode under Reverse Bias Voltage by Extended Time Domain Reflectometry

    Weisong LIAO  Akira KAINO  Tomoaki MASHIKO  Sou KUROMASA  Masatoshi SAKAI  Kazuhiro KUDO  

     
    BRIEF PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    236-239

    We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.

1-20hit(791hit)